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Abstract. Substantial research efforts have been expended to deal with the complexity of concurrent systems
that is inherent to their analysis, e.g., works that tackle the well-known state space explosion problem.
Approaches differ in the classes of properties that they are able to suitably check and this is largely a result
of the way they balance the trade-off between analysis time and space employed to describe a concurrent
system. One interesting class of properties is concerned with behavioral characteristics. These properties are
conveniently expressed in terms of computations, or runs, in concurrent systems. This article introduces the
theory of untanglings that exploits a particular representation of a collection of runs in a concurrent system.
It is shown that a representative untangling of a bounded concurrent system can be constructed that captures
all and only the behavior of the system. Representative untanglings strike a unique balance between time and
space, yet provide a single model for the convenient extraction of various behavioral properties. Performance
measurements in terms of construction time and size of representative untanglings with respect to the original
specifications of concurrent systems, conducted on a collection of models from practice, confirm the scalability
of the approach. Finally, this article demonstrates practical benefits of using representative untanglings when
checking various behavioral properties of concurrent systems.
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1. Introduction

Concurrent systems are systems in which multiple computations, or runs, are executed simultaneously by
independent processing units, which usually interact with each other, in order to achieve a common goal.
Naturally, concurrent systems can provide a better ‘throughput’, i.e., produce more computed output relative
to the number and size of given tasks over a certain period of time, than systems in which all operations are
performed in a centralized manner by a single processing unit. The design of a concurrent system, thus, deals
with finding a suitable coordination of operations that encourages efficiency of individual computations.

Concurrent systems are complex to analyze. The complexity is primarily due to the amount of uncertainty
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about the order in which atomic operations can be executed by different processing units of a system. When
studying this fact in detail, one can immediately identify the following three reasons that are inherent to the
complexity of concurrent systems:

○ Firstly, the number of runs described in a concurrent system is exponential in the number of choices that
one can make when carving a way through the system into a desired computation.

○ Secondly, the number of all possible interleavings of operations described in a concurrent system grows at
a factorial rate with respect to the number of simultaneously enabled operations—a phenomenon which
leads to the well-known state space explosion problem.

○ Thirdly, a concurrent system can encode an infinite number of runs in the case of loops.

Consequently, approaches to analyzing concurrent systems constitute one of the most complex classes of
practical problems in computer science. Most of the techniques for verification of behavioral characteristics of
concurrent systems, i.e., properties over potential runs of concurrent systems, are doomed to explore immense
portions of operation interleavings that are encoded in models of concurrent systems. Besides, the complexity
of these explorations depends on the particular formalism that is used to describe systems.

A number of formalisms for modeling and analyzing concurrent systems have been developed and
systematized [SNW96, LSV98]. Some of them can be used through the entire development cycle while others
target some particular phase, e.g., analysis. One of the first formalisms for describing concurrent systems, and
by now one of the most studied, was proposed in Carl Adam Petri’s seminal work on Petri nets [Pet77]. A
concurrent system captured in the Petri net notation, or a net system, is often reminiscent of a mass of highly
interwoven models of individual runs—a tangle of computations. Every time a Petri net gets instantiated it
‘works’ its way through a maze of pre-designed options into a collection of desired computations.

This article proposes a theory that leads to a novel characterization of runs encoded in concurrent
systems, which is specifically suitable for analysis purposes. Intuitively, we propose to ‘untie’ Petri net
models of concurrent systems into their untanglings—collections of abstract models capturing different
portions of the behavior of the original system. Precisely, an untangling of a concurrent system is a set of its
processes [Pet77, NPW81, GR83], i.e., conflict-free Petri nets, such that each process represents a (possibly
infinite) subset of runs of the original system. A representative untangling of a net system describes the exact
behavior of the net system, is usually larger than the net system (with respect to model size), but is easier to
analyze. Representative untanglings provide a unique balance between the time required for extraction of
various behavioral properties and the space required to describe concurrent systems.

This article discusses a baseline algorithm for building representative untanglings of Petri net models of
concurrent systems and presents results on its termination and correctness analysis. The baseline algorithm
requires an input net system to be bounded, i.e., to have a finite number of reachable states. No restrictions
are put on the Petri net class; we do not require that net systems are captured as workflow nets [vdA97] or
free-choice nets [DE95]. Furthermore, the article presents an improvement of the baseline algorithm that can
be used to efficiently construct representative untanglings with small space footprints. This improvement
is designed as a framework consisting of one or more structural transformations of input net systems and
untanglings produced by the baseline algorithm. In particular, we discuss two reduction rules, inspired
by Murata’s rules [Mur89], that fit the framework and demonstrate that the properties of representative
untanglings are all preserved by the improved algorithm.

To prove the feasibility of the proposed approach, we implemented the improved untangling algorithm
and measured its performance in terms of time and space using a large collection of net systems from practice.
The results confirm that representative untanglings can be constructed efficiently (in the order of a few
milliseconds) and that the duplication factor w.r.t. the original net system is negligible (a representative
untangling is on average only 3.5 times larger than the original system). Moreover, we demonstrate the
practical advantages of representative untanglings over other formalisms for describing concurrent systems
when computing various behavioral properties, e.g., executability, deadlock freedom, and mutual exclusiveness.

The remainder of this article is organized as follows: The next section introduces preliminary notions
that will be used to impart the findings. Section 3 proposes process set systems—abstract models capable of
representing chunks of behaviors of concurrent systems. Section 4 is devoted to the main artifact which is
developed in this article—a representative untangling of a concurrent system; it proposes the baseline algorithm
for constructing representative untanglings. Section 5 discusses the transformation-based optimization
framework and uses this framework to propose an improved untangling algorithm. The article closes with a
discussion of related work, a demonstration of different applications of representative untanglings to analyzing
concurrent systems, an evaluation on a collection of concurrent systems from practice, and conclusions.
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Fig. 1. Two net systems (the same net at two different markings).

2. Preliminaries

This section introduces formalisms that will be used to support discussions in the subsequent sections.
Section 2.1 presents Petri nets and net systems—well-established formalisms for describing concurrent
systems. Section 2.2 talks about processes of net systems—abstract models that are capable of describing the
non-sequential behavior of concurrent systems.

2.1. Petri Nets and Net Systems

Petri nets are a well-known formalism for modeling concurrent systems. This section introduces the basic
Petri net terminology and notations.

Definition 2.1 (Petri net). A Petri net, or a net, is a triple N ∶= (P,T,F ), where P and T are finite
disjoint sets of places and transitions, respectively, and F ⊆ (P × T ) ∪ (T × P ) is the flow relation. ⌟

An element x ∈ P ∪ T is a node of N . A node x ∈ P ∪ T is an input node of a node y ∈ P ∪ T iff x
and y are in the flow relation, i.e., (x, y) ∈ F . Similarly, a node x ∈ P ∪ T is an output node of a node
y ∈ P ∪ T iff (y, x) ∈ F . By ●x, x ∈ P ∪ T , we denote the preset of x, i.e., the set of all input nodes of x,
●x ∶= {y ∈ P ∪ T ∣(y, x) ∈ F}. Likewise, by x●, x ∈ P ∪ T , we refer to the postset of x, i.e., the set of all output
nodes of x, x● ∶= {y ∈ P ∪ T ∣(x, y) ∈ F}. For a set of nodes X ⊆ P ∪ T , ●X ∶= ⋃x∈X ●x and X● ∶= ⋃x∈X x●. For
technical convenience, we require all nets to be T-restricted. A net N is T-restricted iff the preset and postset
of every transition is non-empty, i.e., ∀ t ∈ T ∶ ●t ≠ ∅ ≠ t●.

A node x ∈ P ∪ T is a source node of N iff x has no input nodes, i.e., ●x = ∅. A node x ∈ P ∪ T is a sink
node of N iff x has no output nodes, i.e., x● = ∅. Given a net N ∶= (P,T,F ), by Min(N) we denote the set
of all source nodes of N , i.e., Min(N) ∶= {x ∈ P ∪ T ∣●x = ∅}, whereas by Max(N) we denote the set of all
sink nodes of N , i.e., Max(N) ∶= {x ∈ P ∪ T ∣x● = ∅}. Observe that source and sink nodes of a T-restricted
net are places.

The execution semantics of a Petri net is based on the notion of a marking. A marking of a Petri net is a
distribution of tokens over the net’s places. Let K be a universe of tokens.

Definition 2.2 (Marking of a net). A marking of a net N ∶= (P,T,F ) is a pairM ∶= (K,µ), where K ⊆ K
is a set of tokens and µ ∶K → P is a function that assigns each token to its place. ⌟

Finally, a net system is a net at a certain marking.

Definition 2.3 (Net system).
A net system, or a system, is a pair S ∶= (N,M), where N is a net and M is a marking of N . ⌟

In the graphical notation, a common practice is to visualize places as circles, transitions as rectangles, the
flow relation as directed edges, and tokens as black dots inside the assigned places; see Fig. 1 for examples of
visualizations of net systems. Both net systems in Fig. 1 are defined by the same net at different markings.
The net system (N,M), M ∶= (K,µ), in Fig. 1(a) is at the marking that puts one token at place p1 and
no tokens elsewhere, i.e., µ(p1) = 1 and µ(pi) = 0, i ∈ [2 ..9], whereas the net system in Fig. 1(b) is at the
marking with one token at place p4, one token at place p8, and no tokens elsewhere.
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Whether a transition is enabled depends on tokens in its input places. An enabled transition can occur,
which leads to a fresh marking.

Definition 2.4 (Semantics of a net system).1

Let S ∶= (N,M), N ∶= (P,T,F ), M ∶= (K,µ), be a net system.
○ A transition t ∈ T is enabled in S, denoted by S[t⟩, iff every input place of t contains at least one token,
i.e., ∀ p ∈ ●t ∃ k ∈K ∶ µ(k) = p.
○ If a transition t ∈ T is enabled in S then t can occur, which leads to a net system S′ ∶= (N,M ′), where
M ′ ∶= (K ′, µ′) is a marking obtained by ‘consuming’ one token from every input place of t and ‘producing’
one fresh token at every output place of t as follows:

Let K̂ ⊆ K∖K be a set of tokens such that ∣K̂ ∣ = ∣t●∣ and let g ∶ K̂ → t● be a bijection between K̂ and t●. Let
f ⊆ µ▷●t, with f a bijection and ∣dom(f)∣ = ∣● t∣. Then, K ′ ∶=K△(dom(f)∪dom(g)) and µ′ ∶=µ△(f ∪g).2 ⌟

The net system in Fig. 1(a) enables transitions t1 and t4, whereas the net system in Fig. 1(b) enables
transitions t8 and t9. An occurrence of transition t1 in Fig. 1(a) leads to a system with one token at place p2,
one token at p6, and no tokens at other places. In turn, an occurrence of transition t4 in Fig. 1(a) leads to a
system with one token at place p2, one token at place p5, and no tokens elsewhere. By S[t⟩S′, we denote
the fact that there exists an occurrence of transition t that leads from S to S′. Observe that the execution
semantics of net systems relies on holdings of tokens at places and is independent of the tokens’ identities.
This fact gives rise to the next relation on markings. Two markings M1 ∶= (K1, µ1) and M2 ∶= (K2, µ2) of
a net are equivalent, denoted by M1 ≡ M2, if and only if there exists a bijection β ∶ K1 → K2 such that
µ1(k) = (µ2 ○ β)(k), k ∈K1. Clearly, the ‘≡’ relation is an equivalence relation. Every equivalence class of this
relation specifies a state of the net (system), which is often identified as a multiset of the net’s places.

Definition 2.5 (State of a net). The state of a net N ∶= (P,T,F ) induced by a marking M ∶= (K,µ),
µ ∶K → P , is a multiset H of places of N , where every place p ∈ P appears ∣{k ∈K ∣µ(k) = p}∣ times in H. ⌟

The state of a net system S ∶= (N,M) is the state of N induced by M . We shall write [p1 p1 p2] to denote the
state induced by a marking that puts two tokens at place p1, one token at place p2, and no tokens elsewhere.
Hence, the net system in Fig. 1(a) is at the state [p1], whereas the net system in Fig. 1(b) is at [p4 p8].

Let M1 and M2 be two markings of a net and let H1 and H2 be two states of the net induced by M1

and M2, respectively. It is easy to see that H1 = H2 iff M1 ≡ M2. Let M1 and M2 be equivalent and let
S1 ∶= (N,M1) and S2 ∶= (N,M2) be two net systems, where N ∶= (P,T,F ). Then, it holds that (N,M1)[t⟩
iff (N,M2)[t⟩, t ∈ T . Finally, let (N,M

′
1
) and (N,M ′

2
) be two net systems obtained after an occurrence of

transition t in S1 and S2, respectively. Clearly, it holds that M
′
1
is equivalent to M ′

2
. The above observations

lead to the notion of a step that describes ‘equivalent’ transition occurrences. A triple χ ∶= (H1, t,H2) is
a step in a net N ∶= (P,T,F ), iff it holds that (N,M1)[t⟩(N,M2), where H1 and H2 are the states of net
systems (N,M1) and (N,M2), respectively, and t ∈ T .

A net system induces a set of its reachable states/markings/systems.

Definition 2.6 (Run, Reachable state, Occurrence sequence).
Let S0 ∶= (N,M0), N ∶= (P,T,F ), be a net system.
○ A sequence of steps δ ∶= (H0, t1,H1)(H1, t2,H2) . . . , either finite or infinite, in N is a run in S0, iff δ = ⟨⟩,
i.e., δ is the empty sequence, or H0 is the state of S0.
○ A state H of N is reachable from S0, denoted by H ∈ [S0⟩, iff H is induced by M0 or there exists a run
(H0, t1,H1)(H1, t2,H2) . . . (Hn−1, tn,Hn), n ∈ N0, in S0 such that H =Hn. A marking M of N is reachable
from S0 iff there exists a state H ∈ [S0⟩ such that H is induced by M . A net system (N,M) is reachable
from S0 iff M is reachable from S0. Similarly, we shall often refer to a state, marking, and net system that
is reachable from a net system S as the reachable state, marking, and net system of S, respectively.
○ A sequence of transitions σ ∶= t1t2 . . . , either finite or infinite, of N is an occurrence sequence in S0, iff σ is
empty or there exists a run (H0, t1,H1)(H1, t2,H2) . . . in S0. ⌟

1 While unusual, the use of token identities in this definition allows substantial simplification of formalisms in subsequent
sections.
2 f▷X denotes the range restriction of function f ∶ Y → Z to the subset of its codomain X ⊆ Z, i.e., f▷X ∶= {(y, z) ∈ f ∣z ∈X}.
dom(f) denotes the domain of function f . Finally, X △ Y denotes the symmetric difference of sets X and Y , i.e., the union of
the two sets minus their intersection: X △ Y ∶= (X ∪ Y ) ∖ (X ∩ Y ).
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Let S ∶= (N,M) be a net system. A step (H, t,H ′) in N is a step in S iff H ∈ [S⟩.
In the sequel, we shall often write p1 [t1⟩p2 p6 to denote the step ([p1], t1, [p2 p6]), or p1 [t1⟩p2 p6 [t2⟩p3 p6

to refer to the sequence of steps ([p1], t1, [p2 p6])([p2 p6], t2, [p3 p6]). For example, the net system in Fig. 1(b)
is reachable from the net system in Fig. 1(a), among others, via these runs:

○ p1 [t1⟩p2 p6 [t2⟩p3 p6 [t6⟩p3 p7 [t7⟩p3 p8 [t3⟩p4 p8,
○ p1 [t1⟩p2 p6 [t2⟩p3 p6 [t3⟩p4 p6 [t6⟩p4 p7 [t7⟩p4 p8,
○ p1 [t4⟩p2 p5 [t5⟩p2 p6 [t6⟩p2 p7 [t7⟩p2 p8 [t2⟩p3 p8 [t3⟩p4 p8, and
○ p1 [t4⟩p2 p5 [t2⟩p3 p5 [t5⟩p3 p6 [t6⟩p3 p7 [t7⟩p3 p8 [t8⟩p3 p5 [t5⟩p3 p6 [t6⟩p3 p7 [t3⟩p4 p7 [t7⟩p4 p8.

A net system S ∶= (N,M) is k-bounded, or bounded, iff there exists a number k ∈ N0 such that for every
marking M reachable from S it holds that the amount of tokens at each place of N is at most k, which
implies that the set [S⟩ is finite. Observe that both net systems in Fig. 1 are bounded.

This concludes the section. For more information on Petri nets and systems, the reader can refer to [Mur89].

2.2. Processes of Net Systems

A common way to trace dependencies between transition occurrences in net systems is by means of runs,
cf. Definition 2.6. Runs suit well when it comes to describing orderings of transition occurrences. Let
δ ∶= χ1 . . . χn, n ∈ N0, be a run in a net system S ∶= (N,M0), N ∶= (P,T,F ), let H0 be the state of S,
and let H1 . . .Hn be states of N such that for every position i in δ there exists ti ∈ T for which it holds
that χi = (Hi−1, ti,Hi). Then, every two subsequent steps χi−1 and χi, i ∈ [2 .. n], represent two subsequent
transition occurrences, such that an occurrence of ti−1 leads to a marking that induces Hi−1 and an occurrence
of ti takes place at a marking that induces Hi−1. However, runs of net systems cannot be used to capture
such behavioral phenomena as causality and concurrency.

In this section, we discuss processes of net systems [Pet77, NPW81, GR83]. One can rely on processes to
adequately represent causality and concurrency relations on transition occurrences. A process of a net system
is a net of a particular kind, called a causal net (or sometimes an occurrence net, see for instance [GR83]),
together with a mapping from nodes of the causal net to nodes of the net system. The mapping allows
interpreting the causal net as a concurrent run of the net system.

Definition 2.7 (Causal net). A net N ∶=(B,E,G), where B ⊆ K, is a causal net3, iff :
○ for every b ∈ B it holds that ∣●b ∣ ≤ 1 and ∣ b●∣ ≤ 1, i.e., N is conflict-free, and
○ G+ is irreflexive, i.e., N is acyclic.4 ⌟

Given a causal netN ∶=(B,E,G), elements of B and E are called conditions and events, respectively.
One can use events of causal nets to represent transition occurrences. Consequently, conditions in the

preset and postset of an event must be interpreted as tokens that get consumed and produced, respectively,
by an occurrence of the transition that corresponds to the event. Thus, we suggest that conditions of causal
nets are always drawn from the universe of tokens K. The above discussed intuition can be formalized in the
notion of a process of a net system as follows.

Definition 2.8 (Process of a net system). A process of a net system S ∶= (N,M0), N ∶= (P,T,F ), is a
pair π ∶= (Nπ, ρ), where Nπ ∶= (B,E,G) is a causal net and ρ ∶ B ∪E → P ∪ T is such that:
○ ρ(B) ⊆ P, ρ(E) ⊆ T , i.e., ρ preserves the nature of nodes,
○ M0 ≡ (Min(Nπ), ρ∣Min(Nπ)), i.e., π starts at M0, and

○ for every event e ∈ E and for every place p ∈ P it holds that ∣{(p, t) ∈ F ∣ t = ρ(e)}∣ = ∣ρ−1(p) ∩ ●e∣ and
∣{(t, p) ∈ F ∣t = ρ(e)}∣ = ∣ρ−1(p) ∩ e● ∣, i.e., ρ respects the environment of transitions. ⌟

Given a process π ∶= (Nπ, ρ), Nπ ∶= (B,E,G), an event e ∈ E represents an occurrence of transition ρ(e),
whereas conditions in ●e and e● relate to tokens that get consumed and produced by the occurrence of ρ(e).
More precisely, for every condition c ∈ ●e one token must be removed from place ρ(c) and for every condition
c ∈ e● one token must be put at place ρ(c) during an occurrence of ρ(e).

Fig. 2 shows three processes of the net system in Fig. 1(a). When visualizing processes, we employ elements
ei e

′
i e
′′
i . . . to denote events that refer to transition ti in the corresponding net system. Similarly, conditions

3 For technical convenience, we require that every element of B is an element of K.
4 R+ denotes the transitive closure of a binary relation R.
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Fig. 2. Three processes of the net system in Fig. 1(a).

ci c
′
i c
′′
i . . . are used to refer to place pi. For example, events e6 and e′

6
in Fig. 2(c) refer to transition t6 of

the net in Fig. 1(a), i.e., ρ(e6) = t6 = ρ(e
′
6
), whereas conditions c6 and c′

6
in Fig. 2(c) refer to place p6,

i.e., ρ(c6) = p6 = ρ(c
′
6
). When visualizing several processes we often use identical element names, e.g., event

e1 in the processes in Figs. 2(a) and 2(c). Though it is not required, in what follows we shall always assume,
for technical convenience, that elements with identical names coming from different processes are distinct.
Thus, event e1 of the process in Fig. 2(a) and event e1 of the process in Fig. 2(c) are two different events.

Processes capture dependencies between transition occurrences as follows. Two nodes x and y of a
causal net N ∶= (B,E,G) are causal, or x is a cause for y, iff (x, y) ∈ G+, whereas x and y are concurrent
iff (x, y) /∈ G+ and (y, x) /∈ G+. Intuitively, two distinct events e1 and e2 of a causal net of a process (Nπ, ρ)
of a net system S being concurrent hints at the fact that starting from S one can reach a net system S′ in
which transitions ρ(e1) and ρ(e2) are enabled. Moreover, an occurrence of one of the two transitions in S′

leads to a net system in which the other transition is enabled. In contrast, the fact that event e1 is a cause for
event e2 in Nπ indicates the presence of an order, i.e., starting from S one can reach a net system S′ which
enables transition ρ(e1) such that an occurrence of ρ(e1) in S

′ leads to a net system from which one can
reach a net system that enables transition ρ(e2). For instance, in Fig. 2(a), event e1 is a cause for event e9,
which indicates that an occurrence of transition t1 can act as a prerequisite for an occurrence of transition t9
in the net system in Fig. 1(a). On the other hand, events e2 and e7 are concurrent, i.e., transitions t2 and t7
can be enabled at the same time in some net system reachable from the one shown in Fig. 1(a).

In addition to transition occurrences, processes encode reachable markings of corresponding net systems.
This is accomplished by means of cuts of causal nets. A cut of a causal net is a maximal (with respect to set
inclusion) set of its pairwise concurrent conditions.

Theorem 2.9 (Cuts and reachable markings, [GR83, Theorem 3.5]).
Let π ∶= (Nπ, ρ), Nπ ∶= (B,E,G), be a process of a net system S. If C ⊆ B is a cut of Nπ, then M ∶= (C,ρ∣C)
is a reachable marking of S. ⌟

Theorem 2.9 hints at the fact that processes of net systems can be employed as space-efficient data structures
for storing reachable markings of corresponding net systems. Fig. 2(a) shows two cuts: D1 and D2. Each
of these cuts is composed of conditions that intersect the respective dashed line. Hence, cut D1 is equal
to the singleton {c1} and cut D2 is equal to the set of conditions {c4, c8}. Cuts D1 and D2 in Fig. 2(a)
induce markings that are equivalent to markings in Fig. 1(a) and Fig. 1(b), respectively; these are markings
M1 ∶= (D1, ρ∣D1

) and M2 ∶= (D2, ρ∣D2
) (note that D1 and D2 are sets of tokens from K). Both M1 and

M2 are indeed reachable markings of the net system in Fig. 1(a). Similarly, cuts D1 and D2 in Fig. 2(b)
induce markings that are equivalent to those in Fig. 1(a) and Fig. 1(b), respectively. Observe that the net
in Fig. 2(c) has two cuts that induce markings which are equivalent to the marking in Fig. 1(b); these are
cuts D2 = {c4, c8} and D

′
2
= {c4, c

′
8
}, Again, similar to events and conditions of causal nets, in the rest of the
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Fig. 3. A reproduction process of the net system in Fig. 1(b).

article, two cuts with the same name coming from two different processes will be considered to be different. If
there is a potential for confusion, we shall explicitly mention the net that possesses the cut.

Let π ∶= (Nπ, ρ) be a process of a net system S ∶= (N,M). It is known that Min(Nπ) and Max(Nπ) are
cuts [GR83]. Moreover, by Definition 2.8, Min(Nπ) is a cut that induces a marking that is equivalent to M .
For example, cut D1 in the process (Nπ, ρ) in Fig. 2(a) is equal to Min(Nπ) and induces the marking that is
equivalent to the marking of the net system in Fig. 1(a), i.e., (D1, ρ∣D1

) is equivalent to the marking with
one token at place p1 and no tokens elsewhere, which is depicted in Fig. 1(a).

This concludes the section. For more information on processes of net systems, the reader can refer
to [GR83].

3. Process (Set) Systems

A process of a net system is often interpreted as a model that describes a finite portion of the corresponding net
system’s behavior. In [Des00], Jörg Desel suggests to enhance a causal net Nπ of a process π ∶= (Nπ, ρ) of a net
system S ∶= (N,M) with a markingMπ that puts one token at every source place ofNπ and no tokens elsewhere.
Then, every run in the net system (Nπ,Mπ) ‘represents’ (via mapping ρ) a run in S. For example, consider the
net system Sπ composed of the net in Fig. 2(a) and the marking that puts one token at condition c1 and no to-
kens elsewhere.5 Then, the run c1 [e1⟩ c2 c6 [e2⟩ c3 c6 [e6⟩ c3 c7 [e7⟩ c3 c8 [e3⟩ c4 c8 [e9⟩ c9 in Sπ represents the run
ρ(c1)[ρ(e1)⟩ρ(c2)ρ(c6)[ρ(e2)⟩ρ(c3)ρ(c6)[ρ(e6)⟩ρ(c3)ρ(c7)[ρ(e7)⟩ρ(c3)ρ(c8)[ρ(e3)⟩ρ(c4)ρ(c8)[ρ(e9)⟩ρ(c9) =
p1 [t1⟩p2 p6 [t2⟩p3 p6 [t6⟩p3 p7 [t7⟩p3 p8 [t3⟩p4 p8 [t9⟩p9 in the net system in Fig. 1(a). In this way, Sπ repre-
sents 26 different runs in the net system in Fig. 1(a). Observe that it is not required that every run leads to
the state [p9], e.g., the process in Fig. 2(a) represents, among others, the empty run and run p1 [t1⟩p2 p6.

The simple structure of processes (processes are static models captured as causal nets) permits simple
analysis. For example, processes allow precise reasoning about causality and concurrency of transition
occurrences. However, this simple analysis comes at a price, as time is traded for space. A net system can
often have an infinite number of processes making any type of analysis on the set of all processes an infeasible
task, e.g., both net systems in Fig. 1 induce infinitely many processes. This discussion triggers a question:
Is it possible to represent the behavior of a net system with a finite number of processes? Clearly, one can
give a positive answer to this question only if the space-efficiency of each individual process is ‘high’, i.e., it
should be possible to interpret a process in such a way that it captures an infinite portion of the net system’s
behavior. The initial insights into the feasibility of such an interpretation of a process come from the notion
of a reproduction process [BD90]. A reproduction process (Nπ, ρ) captures repetitive behavior as its minimal
and maximal cuts, i.e., Min(Nπ) and Max(Nπ), induce equivalent markings.

Fig. 3 shows a reproduction process π ∶= (Nπ, ρ) of the net system in Fig. 1(b). Indeed, cuts D2 ∶=
Min(Nπ) and D′

2
∶= Max(Nπ) induce equivalent markings, i.e., (D2, ρ∣D2

) ≡ (D′
2
, ρ∣D′

2
). By following the

ideas from [Des00], the process in Fig. 3 enhanced with a marking that puts one token at each of its source
conditions can be used to represent five runs in the net system in Fig. 1(b): the empty run, p4 p8 [t8⟩p4 p5,
p4 p8 [t8⟩p4 p5 [t5⟩p4 p6, p4 p8 [t8⟩p4 p5 [t5⟩p4 p6 [t6⟩p4 p7, and p4 p8 [t8⟩p4 p5 [t5⟩p4 p6 [t6⟩p4 p7 [t7⟩p4 p8. The
last run from the list above starts and ends at the same state, i.e., the state [p4 p8]. This fact signifies that
one can replay this run over and over again and, hence, interpret the process in Fig. 3 as encoding an infinite
number of runs in the corresponding net system. For example, one can conclude that the process in Fig. 3
represents, among others, the run p4 p8 [t8⟩p4 p5 [t5⟩p4 p6 [t6⟩p4 p7 [t7⟩p4 p8 [t8⟩p4 p5 [t5⟩p4 p6.

The process in Fig. 2(c) is not a reproduction process. However, this process has cuts that induce equivalent

5 Note that tokens for markings of Nπ must be drawn from K ∖B, where B is the set of conditions of Nπ .
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markings, e.g., cuts D2 and D′
2
. Some other pairs of cuts that induce equivalent markings and are not explicitly

shown in Fig. 2(c) are {c2, c6},{c2, c
′
6
} and {c3, c7},{c3, c

′
7
}. In what follows, we use this observation to propose

a new interpretation for processes of net systems. Our new interpretation maximizes the portion of the
corresponding net system’s behavior that processes represent. We formalize this interpretation in the notion
of a process system, which is discussed in detail in Section 3.1. Then, Section 3.2 proposes process set systems
that generalize process systems to interpret behaviors encoded in sets of processes.

3.1. Process Systems

Given a process π ∶= (Nπ, ρ) of a net system S, one can ‘explain’ the behavior described in π in terms of
a ‘restricted’ semantics of S. That is, instead of enhancing Nπ with a marking, as suggested in [Des00], we
propose that the somewhat modified ‘token game’ is played, as usual, in S. Formally, we implement the above
intuition by means of process systems.

Definition 3.1 (Process system). A process system is a triple Sπ ∶= (N,M,π), where N is a net, π is a
process of a net system (N,M ′), and M,M ′ are two markings of N . ⌟

We say that Sπ ∶= (N,M,π), π ∶= (Nπ, ρ), is a process system of the net system (N,M) induced by π if and
only if M ≡ (Min(Nπ), ρ∣Min(Nπ)), i.e., π starts at M , refer to Definition 2.8. The execution semantics of a
process system – similarly to the execution semantics of a net system, cf. Definition 2.4 – consists of the
transition enablement and transition occurrence rules. The enablement rule of a net system (N,M) depends
on the structure of the net, i.e., on tokens in presets of transitions of N . In contrast, the enablement rule of a
process system (N,M,π), π ∶= (Nπ, ρ), relies on the structure of Nπ; specifically, on cuts and events of Nπ.
The exact formulation of the enablement rule is due to Theorem 2.9 and the next result.

Proposition 3.2 (Process restricted transition enablement). Let π ∶= (Nπ, ρ), Nπ ∶= (B,E,G), be a
process of a net system S ∶= (N,M), let D ⊆ B be a set of conditions, and let e ∈ E be an event. If ●e ⊆ D,
then transition t ∶= ρ(e) is enabled in (N,M ′), where M ′ ∶= (D,ρ∣D), i.e., it holds that (N,M

′)[t⟩. ⌟

Proposition 3.2 follows immediately from the fact that ρ preserves the nature of nodes and environment of
transitions, cf. Definition 2.8. Finally, we propose the execution semantics of a process system.

Definition 3.3 (Semantics of a process system).
Let Sπ ∶= (N,M,π), N ∶= (P,T,F ), π ∶= (Nπ, ρ), Nπ ∶= (B,E,G), be a process system.
○ A transition t ∈ T is enabled in Sπ, denoted by Sπ[t⟩, iff there exist a cut C ⊆ B of Nπ and an event e ∈ E
such that M ≡ (C,ρ∣C), ●e ⊆ C, and t = ρ(e).
○ If a transition t ∈ T is enabled in Sπ then t can occur, which leads to a process system (N,M ′, π), where
M ′ is a marking of N for which it holds that (N,M)[t⟩(N,M ′). ⌟

Intuitively, the semantics of a process system (N,M,π), N ∶= (P,T,F ), π ∶= (Nπ, ρ), is obtained by ‘restricting’
the semantics of the net system (N,M) to those markings that are induced by cuts of Nπ and to those
transition occurrences that are described by events of Nπ. Let Sπ and S ′π be two process systems. By
Sπ[t⟩S

′
π, we denote the fact that there exists an occurrence of transition t ∈ T that leads from S to S ′. Let

S0 ∶= (N,M,π), N ∶= (P,T,F ), be a process system. Similar to net systems, we say that the state H of N
induced by M is the state of S0. A sequence of steps δ ∶= (H0, t1,H1)(H1, t2,H2) . . . , either finite or infinite,
is a run in S0, iff δ is empty or there exists a sequence of process systems S1 S2 . . . such that for every position
i in δ it holds that Si−1[ti⟩Si and Hi−1 and Hi are the states of Si−1 and Si, respectively. The notions of
a reachable state, reachable marking, reachable (process) system, and that of an occurrence sequence in a
(process) system are defined (mutatis mutandis) as the respective notions for net systems, cf. Definition 2.6;
the only difference is that they rely on the notion of a run in a process system instead of that in a net system.

As an example, consider the process system Sπ of the net system (N,M) in Fig. 1(a) induced by process π
in Fig. 2(c). Process system S ′π ∶= (N,M

′, π), where S′ ∶= (N,M ′) is the net system in Fig. 1(b), is reachable
from Sπ, e.g., via the run p1 [t1⟩p2 p6 [t2⟩p3 p6 [t6⟩p3 p7 [t7⟩p3 p8 [t3⟩p4 p8. The net system in Fig. 1(b) enables
transitions t8 and t9. S

′
π restricts the semantics of S′ by enabling transition t8 only. Indeed, there exist two

cuts of the causal net in Fig. 2(c) that induce markings equivalent to M ′; these are cuts D2 and D′
2
. Further,

there exist exactly two events e8 and e′
8
for which it holds that ●e8 ⊆ D2 and ●e′

8
⊆ D′

2
. Finally, note that

events e8 and e′
8
both refer to transition t8. An occurrence of transition t8 in S ′π leads to the process system
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S ′′π ∶= (N,M
′′, π), where M ′′ induces the state [p4 p5]. Observe that S ′′π enables transition t5 by means of the

cut {c4, c5} and event e5 of the causal net in Fig. 2(c).
It is easy to see that the process system Sπ of the net system in Fig. 1(a) induced by the process in

Fig. 2(c) describes infinite runs (occurrence sequences), which in turn signifies that there exist infinitely many
runs (occurrence sequences) in Sπ. For example, the regular expression t1 t2 t6 t7 t3 (t8 t5 t6 t7)

∗ matches an
infinite number of occurrence sequences in Sπ.

6

3.2. Process Set Systems

A process system usually captures only part of the behavior of the corresponding net system. For example,
the process system of net system S in Fig. 1(a) induced by the process in Fig. 2(c) does not represent any run
in S that describes at least one occurrence of transition t9. In order to overcome this limitation, we introduce
a process set system that describes behavior of a net system restricted by a collection of processes, rather
than by a single process.

Definition 3.4 (Process set system). A process set system is a triple S ∶= (N,M,Π), where N is a net,
Π is a set of processes, or an untangling, of a net system (N,M ′), and M,M ′ are two markings of N . ⌟

Again, we say that S ∶= (N,M,Π) is a process set system of the net system (N,M) induced by Π if and only
if every process in Π starts at M , refer to Definition 2.8.

The semantics of a process set system is ‘composed’ of the semantics of several process systems.

Definition 3.5 (Semantics of a process set system).
Let S ∶= (N,M,Π), N ∶= (P,T,F ), be a process set system.
○ A transition t ∈ T is enabled in S, denoted by S[t⟩, iff there exists a process π ∈ Π for which it holds that
(N,M,π)[t⟩.
○ If a transition t ∈ T is enabled in S then t can occur, which leads to a process set system (N,M ′,Π′), where
M ′ is a marking of N for which it holds that (N,M)[t⟩(N,M ′) and Π′ ∶= {π ∈ Π∣(N,M,π)[t⟩}. ⌟

Let S and S ′ be two process set systems. By S[t⟩S ′, we denote the fact that there exists an occurrence of
transition t ∈ T that leads from S to S ′. Let S0 ∶= (N,M,Π), N ∶= (P,T,F ), be a process set system. Similar
to net systems and process systems, the state H of N induced by M is the state of S0. All the standard
notions are lifted to process set systems accordingly. A sequence of steps δ ∶= (H0, t1,H1)(H1, t2,H2) . . . ,
either finite or infinite, is a run in S0, iff δ is empty or there exists a sequence of process set systems S1 S2 . . .
such that for every position i in δ it holds that Si−1[ti⟩Si and Hi−1 and Hi are the states of Si−1 and Si,
respectively. Again, the notions of a reachable state, reachable marking, reachable (process set) system,
and occurrence sequence in a (process set) system are defined in the same way as to those for net systems,
cf. Definition 2.6, but considering runs in process set systems.

As an example, consider the process set system S of the net system (N,M) in Fig. 1(a) induced by the
set of processes Π ∶= {π1, π2, π3}, where π1, π2, and π3 are the processes in Fig. 2(a), Fig. 2(b), and Fig. 2(c),
respectively. The process set system S enables transitions t1 and t4. Transition t1 is enabled via cuts D1

and events e1 in processes π1 and π3. Transition t4 is enabled via cut D1 and event e4 in process π2. An
occurrence of transition t1 in S leads to the process set system S ′ ∶= (N,M ′,Π′), where M ′ induces the
state [p2 p6] and Π′ ∶= {π1, π3}; note that Π′ does not contain process π2 as it was not used to enable t1.
From S ′ one can reach, e.g., via the run p2 p6 [t2⟩p3 p6 [t3⟩p4 p6 [t6⟩p4 p7 [t7⟩p4 p8, the process set system
S ′′ ∶= (N,M ′′,Π′), where M ′′ induces the state [p4 p8]. S

′′ enables transitions t8 and t9. An occurrence of
transition t9 in S ′′ leads to the process set system S ′′′ ∶= (N,M ′′′,{π1}), where M

′′′ induces the state [p9].
Alternatively, an occurrence of transition t8 in S ′′ leads to the process set system S̄ ∶= (N,M̄,{π3}), where
M̄ induces the state [p4 p5]. Note that S ′′′ does not enable any transition, while S̄ enables transition t5.

6 In the proposed regular expression, parentheses are used to define the scope and the asterisk is used to indicate that there is
zero or more of the preceding element.
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Fig. 4. A representative untangling of the net system in Fig. 1(a).

4. Representative Untanglings

The process set system S of the net system S in Fig. 1(a) induced by the set of three processes in Fig. 2
represents a big share of runs in S, where a run δ in S is considered to be represented in S if and only if δ is
a run in S. Still, S does not represent any run in S in which transitions t4 and t8 both occur.

This section proposes the notion of a representative untangling of a net system. A representative untangling
of a net system S is a set of processes of S that induces a process set system of S that describes all the
behavior of S and disallows any other. Section 4.1 defines the notion of a representative untangling of a net
system. Then, Section 4.2 proposes an algorithm for constructing representative untanglings.

4.1. Definition

A net system can be ‘untangled’ into a set of its processes in many different ways. Every set of processes
of a net system contains information on some portion of the net system’s behavior. The precise definition
of this portion depends on the particular semantics that one associates with processes. If one expects to
employ untangled processes for analysis, it is essential that they capture all and only the behavior of the
corresponding net system (see the discussion in Section 3). Next, we characterize those untanglings that
according to the semantics proposed in Section 3.2 represent the exact behavior of the corresponding systems.

Definition 4.1 (Representative untangling).
Let Π be a set of processes, i.e., an untangling, of a net system S ∶= (N,M).
○ A process π ∈ Π represents a step (H, t,H ′) in S iff it holds that (N,M ′, π)[t⟩,
where M ′ is a marking of N that induces H.
○ A process π ∈ Π represents a run δ in S, either finite or infinite, iff π represents every step of δ.
○ An untangling Π of S is representative iff for every run δ in S there is a process π ∈ Π that represents δ. ⌟

Fig. 4 shows two processes of net system S in Fig. 1(a) that constitute a representative untangling of S.
Let Π be a representative untangling of a net system S ∶= (N,M). Then, it holds that S and the process

set system S ∶= (N,M,Π) are in a strong behavior equivalence relation. In fact, from the point of view of an
external observer, S and S specify the same system. Both S and S induce occurrences of transitions of N .
Thus, whenever a transition occurs in either of the two systems, it occurs in the same environment, i.e., the
same preset and postset of places. Because a run δ in S is represented by some process π ∈ Π, it holds that δ
is a run in S. The converse, i.e., the result that a run δ in S is also a run in S, can be obtained by appealing
to Proposition 3.2 at each step of δ. The above observations lead to the conclusion that S and S are two
occurrence net equivalent systems [vGV87], which is the strongest behavioral equivalence notion for models
of concurrent systems [Tar97]; it states that unfoldings [McM92, McM95] of both systems are isomorphic.

A representative untangling Π of a net system S induces a process set system that allows all the behavior
captured in S and disallows any other. Moreover, Π provides an alternative specification of the behavior
that is described in S which is particularly interesting for analysis purposes (refer to Section 7 for details);
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The unique analysis experience for S that stems from the use of Π is mainly due to the special relation
between runs in S and processes in Π. For example, one can test if there exists a run in S with certain
properties by checking if there exists a process in Π that allows some run with these properties. Alternatively,
it is possible to check if some property holds for all runs in S by validating it against all processes in Π.
Finally, as processes in Π adequately represent the ordering, causality, and concurrency relations on transition
occurrences, one can rely on these relations when analyzing the described behavior.

4.2. Construction

This section proposes an algorithm that given a bounded net system S builds a representative untangling of
S. It starts by suggesting an encoding for describing processes in pseudocode. The encoding is used to define
an algorithm that given a run in a net system constructs its induced process. The algorithm for building
representative untanglings relies on this construction as it proceeds by discovering those runs in the given net
system that induce a set of processes with the desired characteristics. After having presented the untangling
algorithm, this section closes with its termination and correctness analysis.

4.2.1. Encoding of Processes

One can encode processes in many different ways. For example, one can adopt the approach proposed
in [ERV02]. A process can be captured as a set of nodes. A node is either a condition or an event. A
condition is a pair of a place it refers to and the only event in its preset, or NIL if the condition is a source
condition. An event is a pair of a transition it refers to and a set of conditions in its preset. This encoding is
particularly convenient for describing nets without backward conflicts. Processes are captured as causal nets
and, thus, forbid backward conflicts. However, causal nets forbid forward conflicts as well, cf. Definition 2.8.
Consequently, we take a different approach and represent conditions (B) and events (E) as tokens and sets of
tokens, respectively, i.e., B ⊆ K and E ⊆ P≥1(K).

7 A binary relation ρ ⊆ (B × P ) ∪ (E × T ) is used to specify
the mapping of conditions to places (P ) and events to transitions (T ). As usual, the structure of a process is
given by a flow relation G ⊆ (B ×E) ∪ (E ×B). This proposed process encoding follows the intuition that
every condition describes a holding of a token at a certain place and every event describes an occurrence of a
transition at a certain marking. Next, we implement this intuition.

4.2.2. From Runs to Processes

A natural way to address construction of a process is by iteratively appending fresh events to a causal net.
The input to such a procedure is a run in a net system, i.e., a sequence of transition occurrences. Algorithm 1
summarizes a procedure that given a run in a net system constructs its induced process. The algorithm
follows the intuition of the proof of Theorem 3.6 in [GR83].

The starting point for the construction is an ‘empty’ process, i.e., a process composed of conditions that
correspond to tokens in the marking of the net system and no events, cf. lines 1–2 in Algorithm 1. The
construction proceeds by iteratively appending events to the process via the for loop of lines 4–11. Every
appended event corresponds to a transition occurrence described by some step of the given run. Events are
appended in the order in which the respective steps appear in the run. Every fresh event that gets appended
to the process and has transition t as its corresponding transition is appended together with output conditions
that correspond to output places of t, refer to lines 6–9 in the algorithm. Observe that line 6 ensures that
appended conditions are fresh with respect to the history of the run. The flow relation gets completed at
line 8. Note that at the start of every iteration of the for loop, the pair (K,µ) describes a marking that
enables transition ti, i.e., induces state Hi−1; refer to the input run of the algorithm.

The construction proposed in Algorithm 1 is not unique, but is always possible. Moreover, a process that
results from a call to this algorithm represents the run it was constructed from.

Proposition 4.2 (Processes and runs).
If δ is a finite run in a net system S, then it holds that Process(S, δ) represents δ. ⌟

7
P≥1(X) denotes the set of all non-empty subsets of a set X, including X itself.
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Algorithm 1: Process(S, δ) – Construct a process induced by a run

Input: A run δ ∶= (H0, t1,H1) (H1, t2,H2) . . . (Hn−1, tn,Hn), n ∈ N0, in a net system S ∶= (N,M0),
N ∶= (P,T,F ), M0 ∶= (K0, µ0), ti ∈ T , i ∈ [1 .. n]

Output: A process π of S induced by δ

1 B ∶=K0; E ∶= ∅; G ∶= ∅; // initialize conditions, events, and the flow relation
2 ρ ∶= µ0; // initialize mapping of nodes
3 K ∶=K0; µ ∶= µ0;
4 for i ∶= 1 to n do // iterate over positions in δ

// prepare
5 f ⊆ µ▷●ti is a bijection such that ∣dom(f)∣ = ∣●ti∣;
6 X ⊆ K ∖B is a set of tokens such that ∣X ∣ = ∣ti●∣;
7 g ∶X → ti● is a bijection between X and ti●;

// construct
8 B ∶= B ∪X; E ∶= E ∪ {K}; G ∶= G ∪ (dom(f) × {K}) ∪ ({K} × dom(g));
9 ρ ∶= ρ ∪ {(K, ti)} ∪ g;

10 µ ∶= µ△ (f ∪ g); K ∶= dom(µ);
11 end
12 return π ∶= ((B,E,G), ρ);

Proof. Let δ ∶= (H0, t1,H1)(H1, t2,H2) . . . (Hn−1, tn,Hn), n ∈ N0, be a run in a net system S ∶= (N,M). For
every start of the i-th iteration of the for loop of lines 4–11, the set C ∶=Max((B,E,G)) is a cut of (B,E,G)
and (C,ρ∣C) is a marking of N that induces Hi−1, cf. [GR83] for details. By the end of the i-th iteration of
the for loop, a fresh event that corresponds to transition ti is appended to the process under construction
with its preset completely in C. Hence, Process(S, δ) represents every step of δ, cf. Definition 4.1. ◾

4.2.3. Algorithm

This section proposes an algorithm for constructing representative untanglings. The algorithm expects a
bounded net system S as input and is a state space search algorithm that discovers those runs in S that
induce a representative untangling of S. Searching a state space means systematically observing transition
occurrences so as to visit all the reachable states of the net system. Subsequent transition occurrences make
up runs of the net system. If one attempts to use some runs of S to induce a representative untangling, one
must ensure that these runs contain a sufficient amount of information on the behavior that is captured
in S. Construction of a run can terminate when the run leads to a net system that does not enable any
transition. Additionally, we propose to terminate construction of a run if it contains a subsequence that
encodes a repetitive behavior that can be ‘reconstructed’ from other steps of the run, i.e., the run is not
significant with respect to repetitive behaviors which it specifies.

Definition 4.3 (Significant run).
A run δ ∶= χ1 χ2 . . . , either finite or infinite, in a net system is repetition significant, or significant, iff :

∀ i ∈ [1 .. n)∀ j ∈ (i .. n] ∶ χi = χj ⇒ ∃k ∈ (i .. j)∀m ∈ [1 .. i) ∪ (j .. n] ∶ χk ≠ χm. ⌟

Intuitively, a run δ is significant if every subsequence γ of δ composed of all steps between a pair of
identical steps at two distinct positions of δ is non-empty and cannot be ‘reconstructed’ from steps at
positions of δ that are not part of γ. We shall refer to runs that are not significant as insignificant. It
is easy to see that every run having length less than or equal to one is significant, whereas a run that
is composed of two identical steps is insignificant. As a further example consider the sequence of steps
δ ∶= p1 [t1⟩p2 p6 [t6⟩p2 p7 [t7⟩p2 p8 [t8⟩p2 p5 [t5⟩p2 p6 [t6⟩p2 p7 [t7⟩p2 p8 [t8⟩p2 p5. This sequence is a significant
run in net system S in Fig. 1(a). Although step χ ∶= ([p2 p6], t6, [p2 p7]) appears twice in δ (at positions i = 2
and j = 6), observe that the step ([p2 p5], t5, [p2 p6]) at position k = 5 is unique within δ and resides between
the two occurrences of χ. A similar reasoning applies to steps ([p2 p7], t7, [p2 p8]) and ([p2 p8], t8, [p2 p5]) of
δ. Note, however, that sequence δ′ ∶= δ + ([p2 p5], t5, [p2 p6]) is an insignificant run in S.8

8 Let α and β be two sequences. Then, α + β is the sequence obtained by concatenating α and β, i.e., joining them end-to-end.
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Algorithm 2: BaselineRepresentativeUntangling(S)

Input: A bounded net system S ∶= (N,M0)
Output: A representative untangling of S

1 ∆ ∶= {⟨⟩}; // ∆ is a set of runs in S,R ∶= {⟨⟩},A ∶= ∅

2 RS
b ∶= ∅; // initialize result with the empty set

3 while ∆ ≠ ∅ do
4 ∆ ∶=∆ ∖ {δ}, δ ∈∆; // δ is a run in S

5 if PE(S, δ) = ∅ then RS
b ∶=R

S
b ∪ {Process(S, δ)}; // construct result

6 else
7 allExtIns ∶= true;
8 foreach χ ∈ PE(S, δ) do
9 if δ + χ is significant then

10 ∆ ∶=∆ ∪ {δ + χ}; // R ∶= R ∪ {δ + χ},A ∶= A ∪ {(δ, δ + χ)}
11 allExtIns ∶= false;
12 end
13 end

14 if allExtIns then RS
b ∶=R

S
b ∪ {Process(S, δ)}; // construct result

15 end
16 end

17 return RS
b ;

Let Σ be the set of all steps in a net system S and let δ ∶= χ1 χ2 . . . χn, n ∈ N0, be a run in S. By PE(S, δ)
we denote the set of all possible extensions of δ, i.e., the set that contains every step χ ∈ Σ for which it
holds that δ + χ is a run in S. Finally, Algorithm 2 exploits the significance property of runs to construct a
representative untangling of a bounded net system. Note that the code in the comments to lines 1 and 10 will
be used later to reason over loop invariants.

4.2.4. Termination Analysis

The while loop of lines 3–16 in Algorithm 2 iterates as long as there are runs in set ∆. Prior to the first
iteration of the loop, at line 1, set ∆ is initialized with the empty run. At every iteration of the while loop,
one run δ is drawn from ∆ at line 4. If δ has no possible extensions (see the check at line 5), then no runs are
added to ∆ in the same iteration of the loop. Otherwise, in the foreach loop of lines 8–13, every possible
extension of δ that results in a significant run (refer to the check at line 9) triggers insertion of this extended
run into set ∆ at line 10. Observe that no run is added to set ∆ within a single iteration of the while loop of
lines 3–16 if every possible extension of δ leads to an insignificant run in S.

Given a bounded net system as input, Algorithm 2 systematically explores its runs. Let R be a set that
collects runs that are added to set ∆ at lines 1 and 10 along a course of execution of Algorithm 2 – a set of
visited runs; R can be constructed as specified in the comments of the applicable lines of the algorithm (if
executed). It is easy to see that the while loop of lines 3–16 maintains the next invariant.

Invariant 4.4 (Fresh runs – the while loop of lines 3–16).
Let R be the set of visited runs up to the current execution point in Algorithm 2. Prior to every execution of
line 10, it holds that the run δ + χ is not in R. ⌟

Proof. Assume that before some execution of line 10, it holds that δ + χ is in R. Then, in the trace of the
same execution of Algorithm 2 one can observe two iterations of the while loop of lines 3–16 that select the
same run as δ at line 4. This means that there exists an iteration of the while loop in the course of this
execution such that before line 10 it holds that δ is in R. By applying the above reasoning iteratively, one
can conclude that there exist two iterations of the while loop of lines 3–16 that select the empty run as δ at
line 4. However, one can clearly see from the structure of the algorithm that the empty run is always selected
at line 4 during the first iteration of the while loop and never again at any subsequent iteration. ◾
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The logic of Algorithm 2 makes it apparent that its execution will never terminate if the input net system has
an infinite significant run. Next, we show that there are no infinite significant runs in a bounded net system.

Lemma 4.5 (Infinite runs).
An infinite run in a bounded net system is insignificant. ⌟

Proof. Let δ ∶= χ1, χ2 . . . be an infinite run in a bounded net system S ∶= (N,M), N ∶= (P,T,F ). Assume
that δ is significant. Let Σ be the set of all steps (H, t,H ′), t ∈ T , in S. Because S is bounded and T is finite,
it holds that Σ is finite. There exists a step χ ∈ Σ such that χ occurs infinitely often in δ; otherwise δ is finite.
Then, there also exists an infinite sequence γ of positions in δ (in ascending order) such that for every element
n in γ it holds that χ = χn. Consequently, for every pair of subsequent elements i and j in γ, i.e., i < j, there
exists k ∈ (i .. j) such that for all m ∈ [1 .. i) ∪ (j ..+∞] it holds that χk ≠ χm; otherwise δ is insignificant.
Then, it holds that χ occurs at most ∣Σ∣ times in δ and, thus, γ is finite. ◾

In other words, all significant runs in a bounded net system are finite. Another threat that can cause
Algorithm 2 to run forever stems from the necessity to explore an infinite number of finite significant runs.
Next, we show that there is a finite number of significant runs in a bounded net system.

Lemma 4.6 (Significant runs).
The set of all significant runs in a bounded net system is finite. ⌟

Proof. Let S ∶= (N,M), N ∶= (P,T,F ), be a bounded net system and let Σ be the set of all steps (H, t,H ′),
t ∈ T , in S. As S is bounded and T is finite, it holds that Σ is finite. As per Lemma 4.5, every significant
run in S is finite. Then, there is n ∈ N0 such that every significant run in S is a sequence of at most n steps.
Thus, the number of significant runs in S cannot be larger than the size of a dictionary of all words of length
at most n such that every word is composed of symbols drawn from the fixed alphabet Σ. Such a dictionary
is finite. ◾

Finally, Theorem 4.7 collects all the above results to show that Algorithm 2 indeed terminates for every input
bounded net system.

Theorem 4.7 (Termination). Algorithm 2 always terminates. ⌟

Proof. Algorithm 2 terminates if the while loop of lines 3–16 terminates. We associate a measure with every
iteration of the while loop. Let R be a set of visited runs that gets constructed at lines 1 and 10 in the course
of some execution of Algorithm 2. Let the measure of the i-th iteration of the while loop be a pair (∆i,Ri),
where ∆i and Ri are the values of ∆ and R, respectively, at the time of the check at line 3 (prior to executing
the body of the loop). For example, ∆1 and R1 are both equal to {⟨⟩}. One can classify every scenario of a
single iteration of the while loop into two cases according to which relation between the measure of this
iteration and the measure of the next iteration this scenario leads:

(i) ∣∆i+1∣ − ∣∆i∣ = n, n ∈ N0, and Ri ⊂ Ri+1. This case corresponds to the scenario when a run δ chosen at line
4 has at least one significant extension and, hence, line 10 is executed one or more times during the i-th
iteration of the while loop. Observe that both ∣∆i∣ ≤ ∣∆i+1∣ and Ri ⊂ Ri+1 hold because of Invariant 4.4.

(ii) ∆i+1 ⊂ ∆i and Ri = Ri+1. This case corresponds to the scenario when a run δ chosen at line 4 has no
extensions or all its extensions result in insignificant runs and, thus, line 10 is not executed during the i-th
iteration of the while loop.

The key observation here is that execution of the while loop can follow the scenario that falls under case (i)
only a finite number of times. It is easy to see that the algorithm preserves the invariant of R being composed
of significant runs and the set of all significant runs is finite, refer to Lemma 4.6. Every time the while loop
is executed according to scenario (i), the size of set ∆ stays unchanged or is increased by some number n.
Therefore, there exists an iteration of the while loop from which on every subsequent iteration of this loop
will follow scenario (ii); note that at that moment in time set ∆ is finite. Thus, set ∆ will eventually become
empty and the condition at line 3 will evaluate to false. ◾

4.2.5. Correctness Analysis

Let δ be a run in a net system S. If an untangling Π of S is representative, then there exists a process π ∈ Π
that represents every step of δ, cf. Definition 4.1. According to Proposition 4.2, a process that is constructed
from a run using Algorithm 1 represents all steps of that run. Next, we show that for every run in a bounded
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net system S it holds that it is composed of steps that also participate in some run that is used to induce a
process in set RS

b constructed using Algorithm 2.
Every fresh run that gets explored by Algorithm 2 is obtained from the one previously observed, refer to

lines 4 and 10 of the algorithm. This fact gives rise to the next relation on runs.

Definition 4.8 (Graph of runs).
Let R be the set of visited runs constructed by Algorithm 2 for an input bounded net system S. A graph of
runs of S is a pair G ∶= (R,A), where A is the set of pairs (δ, δ + χ) constructed for every pair of values for δ
and χ observed at line 10 during execution of Algorithm 2 for input S. ⌟

The principles for constructing sets R and A are specified in the comments to lines 1 and 10 of Algorithm 2.
Next, we point out two interesting invariants of the while loop of lines 3–16 that relate to graphs of runs.

Invariant 4.9 (Tree of runs – the while loop of lines 3–16).
Let ∆i, R

S
n,i, and Gi ∶= (Ri,Ai), be the values for ∆, the set of runs used to induce the set of processes

RS
b , and the graph of runs, respectively, at the start of the i-th iteration of the while loop of lines 3–16 in

Algorithm 2. Then, these two statements hold at the start of the i-th iteration of the while loop:
(i) Gi is a tree, (ii) ∆i ∪R

S
n,i are all the leaves of the tree Gi which is rooted at ⟨⟩ ∈ Ri (the empty run). ⌟

Proof. We show that statements (i) and (ii) both hold prior to the first iteration of the loop, and if statements
(i) and (ii) both hold before some iteration of the loop, then they also hold before the next iteration.

Initialization: It is immediate that G1 ∶=({⟨⟩},∅) is a tree and ∆1∪R
S
n,1={⟨⟩} are all the leaves of G1.

Maintenance: (i) Because of Invariant 4.4, for every two subsequent iterations of the while loop of lines 3–16
it holds that ∣Ri+1∣ − ∣Ri∣ = ∣Ai+1∣ − ∣Ai∣. Therefore, because G1 consists of a single vertex and no edges, it
holds that ∣Ai+1∣ = ∣Ri+1∣−1. In addition, it clearly holds that Gi+1 is connected. (ii) A run δ that is selected
from ∆i at line 4 is a leaf node of Gi, where Gi is rooted at ⟨⟩. Note that δ is removed from ∆i+1 at line 4.
If δ has an extension χ that leads to a significant run, then, because of Invariant 4.4, a fresh node δ + χ is
added to Gi+1 at line 10, which is a leaf node of Gi+1 (run δ + χ is also added to ∆i+1); otherwise no fresh
run is added to Ri+1 and, thus, δ is a leaf node of Gi+1, and it is added to RS

n,i+1 at line 14. ◾

Moreover, it is immediate to see that at every moment in the course of execution of Algorithm 2, set RS
b

is composed of processes induced by maximal significant runs, where a significant run is maximal if every
one of its extensions leads to an insignificant run. Indeed, a run induces a process in RS

b either if it has no
extensions (line 5) or all its extensions are insignificant (allExtIns flag is set to true at line 14). Next, we
propose several results on the significance of runs that we shall later orchestrate to show that Algorithm 2 is
correct. We start with the claim that each extension of an insignificant run leads to an insignificant run.

Proposition 4.10 (Insignificance invariant).
Let δ be an insignificant run in a net system S. Then, a run δ + χ, where χ ∈ PE(S, δ), is insignificant. ⌟

The proof of Proposition 4.10 follows immediately from Definition 4.3.

Proposition 4.11 (Infinite and finite runs).
Let δ be an infinite run in a bounded net system S. Then, there exists a finite run δ′ in S such that for every
step χ of δ there is a step χ′ of δ′ for which it holds that χ = χ′. ⌟

Proof. Let δ ∶= χ1, χ2 . . . be an infinite run in a bounded net system S ∶= (N,M), N ∶= (P,T,F ). Let Σ be
the set of all steps of δ. Because S is bounded and T is finite, it holds that Σ is finite. Let Ω be the set that
for every step χ ∈ Σ contains the smallest position i in δ at which χ occurs. Then, a sequence δ′ derived from
δ by deleting all the elements of δ after position maxΩ is finite. Moreover, it is guaranteed that for every
step χ of δ there exists a step χ′ of δ′ for which it holds that χ = χ′. ◾

An important observation is that for every finite insignificant run δ there exists a significant run that has all
the unique steps of δ as its elements.

Lemma 4.12 (Significant and insignificant runs).
Let δ be a finite insignificant run in a net system S. Then, there exists a significant run δ′ in S such that for
every step χ of δ there is a step χ′ of δ′ for which it holds that χ = χ′. ⌟
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Proof. Let δ ∶= χ1 . . . χn, n ∈ N0, be a finite insignificant run in S. Then, these two conditions hold: (i) there exist
two positions i and j in δ such that i < j and χi = χj , and (ii) for every k ∈ (i .. j) there existsm ∈ [1 .. i)∪(j .. n]
such that χk = χm. Let δ′ be a sequence obtained from δ via a reduction operation that deletes all elements
of δ after position i up to and including the element at position j, i.e., δ′ ∶= (χ1 . . . χi) + (χj+1 . . . χn). Clearly
δ′ is a run in S. Moreover, because of condition (ii) above, for every step χ of δ there is a step χ′ of δ′ for
which it holds that χ = χ′. Observe that the length of δ′ is strictly smaller than the length of δ. Assume
that δ′ is always insignificant. Then, one can construct an infinite sequence of finite insignificant runs in S
that starts with δ and every other run in the sequence is obtained from the previous run via the reduction
operation proposed above, which is impossible. ◾

The next corollary is an immediate consequence of Proposition 4.11 and Lemma 4.12.

Corollary 4.13 (Runs and significant runs).
Let δ be a run, either finite or infinite, in a bounded net system S. Then, there exists a significant run δ′ in
S such that for every step χ of δ there is a step χ′ of δ′ for which it holds that χ = χ′. ⌟

Finally, Theorem 4.14 collects all the above results to demonstrate that Algorithm 2 is correct in the sense
that given a bounded net system S it, indeed, computes a representative untangling of S.

Theorem 4.14 (Correctness).
Let S be a bounded net system. Then, RS

b is a representative untangling of S. ⌟

Proof. Upon termination of Algorithm 2, it holds that ∆ = ∅ and, hence, set RS
b contains processes induced

by all the runs that correspond to the leaf nodes in the tree of runs G ∶= (R,A) of S, refer to Invariant 4.9.
Therefore, for every run δ in S that is composed of steps that also participate in some leaf run in G it holds
that there exists a process in RS

b that represents δ, refer to Proposition 4.2. Next, we show that the above
statement holds for every significant run in S. Observe that R is composed of significant runs, see the check
at line 9 of Algorithm 2, and every internal run in G is a subrun (a subsequence) of some leaf run in G.
Moreover, as leaf runs in G are maximal and because of Proposition 4.10, it holds that R is the set of all
significant runs in S. Finally, according to Corollary 4.13, it holds that every insignificant run is composed
from steps of some significant run that, in turn, is composed from steps of some leaf run in G. ◾

5. Transformation-based Untangling

Algorithm 2 is primarily of theoretical value. As the name BaselineRepresentativeUntangling suggests, it
should be used as a point of reference that specifies basic principles for constructing representative untanglings.
In practice, this algorithm is often ‘expensive’ to execute as it relies on an extensive search over state spaces
induced by input net systems. For example, set RS

b of the net system S in Fig. 1(a) comprises 352 processes!
In this section, we propose an enhancement to the baseline algorithm that can yield results that suit practical
applications. The enhancement is based on structural transformations of input net systems that ‘inform’
subsequent structural transformations of resulting untanglings. The proposed enhancement is ‘orthogonal’
to the baseline technique as it proposes pre- and post-processing measures to be taken in combination
with Algorithm 2. To set the scene, Section 5.1 describes the overall design of the transformation-based
untangling technique and develops requirements for individual transformations. Section 5.2 proposes two
transformations that fit the proposed design. Finally, Section 5.3 collects all the results of this section to
explain the transformation-based untangling technique.

5.1. Design

The proof of correctness of Algorithm 2 exploits the observation that an untangling of S is representative if it
represents every maximal significant run in S. We formalize this observation in the next statement.

Lemma 5.1 (Representative untangling). An untangling Π of a bounded net system S is representative
if and only if for every maximal significant run δ in S there exists a process π ∈ Π that represents δ. ⌟

The proof of Lemma 5.1 is immediate due to Definition 4.1 and the proof of Theorem 4.14.
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Fig. 5. Schematic visualizations of two untangling techniques: (a) Algorithm 2 only, and (b) the enhanced
version of Algorithm 2 that relies on structural transformations.

Fig. 5(a) gives a schematic visualization of Algorithm 2. Starting with an input bounded net system S,
the set Ω of all maximal significant runs in S is discovered; let n be the cardinality of Ω, ∣Ω∣ = n. Every
maximal significant run that appears in Ω triggers construction of one process in the resulting representative
untangling Π of S. In the figure, boxes with dotted borderlines denote scopes of the respective algorithms.

As pointed out in the previous section, Algorithm 2 suffers from the fact that the number n of all
maximal significant runs in a bounded net system can be immense. Consequently, constructed representative
untanglings can contain extremely large numbers of processes, which restricts their practical applicability. To
address this issue, we propose an enhancement to the baseline untangling technique. Given a bounded net
system S, we suggest that one is as far as three steps away from a representative untangling of S:

1. S gets transformed into a bounded net system S′ using some structural transformation rule φ.9

2. A representative untangling Π′ of S′ is discovered by constructing processes that represent all maximal
significant runs Ω′ in S′, where ∣Ω′∣ =m, using Algorithm 2.

3. To compensate for the effects of the transformation at step 1, every process in Π′ gets transformed using
some rule ψ (an ‘inverse’ of φ) to obtain Π—a representative untangling of S.

The logic of this three-step approach is summarized in the schematic drawing in Fig. 5(b). It is designed
to benefit from the decrease in the number m of maximal significant runs in S′ as compared to those in S; it
is expected that m is much less than n, i.e., m≪ n. It is reasonable to expect such a decrease when at step 1
of the outlined procedure one applies a structural reduction on a given net system, as many well-established
structural reduction rules do indeed lead to a noticeable decrease in the number of runs in the reduced
system [Mur89].

Clearly, not every pair of rules φ and ψ fits the proposed algorithm design. We noticed that rules φ and
ψ fit the design if there exists a special relation between runs in a given net system S and runs in a net
system S′ (the net system that S is transformed into). More precisely, given a transformation (S,S′) ∈ φ
and a transformation rule ψ between processes of S and S′, one can construct a representative untangling
of S by relying on S′ and ψ, as suggested in Fig. 5(b), if there exists a relation γ between a superset ∆
of all the maximal significant runs Ω in S and a superset Λ′ of all the maximal significant runs in S′ such
that S, S′, ψ, and γ all relate to each other in a certain way, which will be detailed below. Fig. 6 shows an
augmented version of the schematic drawing in Fig. 5(b); γ is introduced to characterize cases when processes
in Π represent runs in Ω and, thus, all runs in S (cf. Lemma 5.1).

Firstly, rule ψ must correspond to the transformation (S,S′) ∈ φ.

Definition 5.2 (Corresponding transformation rule: Processes).
A transformation rule ψ between processes of net systems corresponds to a net system transformation
(S,S′) ∈ φ iff for every process π′ of S′ that represents at least one maximal significant run in S′ it holds
that there exists a process π of S such that (π,π′) ∈ ψ. ⌟

Intuitively, correspondence of a rule ψ to a transformation (S,S′) hints at the possibility of using ψ to
transform every process in Π′ into a process in Π.

Secondly, rule γ must correspond to the transformation (S,S′) ∈ φ.

Definition 5.3 (Corresponding transformation rule: Runs).
A transformation rule γ between runs in net systems corresponds to a net system transformation (S,S′) ∈ φ

9 A transformation rule, or a rule, α between two sets A and B is a binary relation between A and B. A pair (a, b) ∈ α is a
transformation. The fact that (a, b) ∈ α denotes that a can be transformed into b using α, and vice versa.
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Fig. 6. Augmented version of the schematic visualization of the enhanced version of Algorithm 2 in Fig. 5(b).

iff: (i) for every maximal significant run δ in S it holds that there is a run δ′ in S′ such that (δ, δ′) ∈ γ, and
(ii) for all (δ, δ′) ∈ γ it holds that if δ is a maximal significant run in S then δ′ is a significant run in S′. ⌟

Intuitively, correspondence of a rule γ to a transformation (S,S′) hints at the possibility of using γ to
transform every maximal significant run in S into a significant run in S′.

Finally, rules ψ and γ must be compatible.

Definition 5.4 (Compatible transformations). A transformation rule ψ between processes of net sys-
tems and a transformation rule γ between runs in net systems are compatible if and only if for all (π,π′) ∈ ψ
and for all (δ, δ′) ∈ γ it holds that if π′ represents δ′ then π represents δ. ⌟

A net system transformation rule φ is sound, iff for every (S,S′) ∈ φ it holds that S and S′ are bounded and
there exist transformation rules ψ and γ between processes of S and S′, and runs in S and S′, respectively,
such that ψ and γ correspond to (S,S′), and ψ and γ are compatible.

Every transformation taken from a sound rule fits the above proposed three-step untangling approach.

Lemma 5.5 (Representativeness inheritance). Let (S,S′) ∈ φ be a transformation between two bounded
net systems. Let ψ be a transformation rule between processes of S and S′ and let γ be a transformation rule
between runs in S and S′. Finally, let Π′ be a representative untangling of S′. If ψ and γ correspond to the
transformation (S,S′) and are compatible, then Π ∶= ψ−1(Π′) is a representative untangling of S. ⌟

Proof. According to Lemma 5.1, it suffices to show that Π represents every maximal significant run in S.
Let δ be a maximal significant run in S. Because γ corresponds to the transformation (S,S′), there exists
a significant run δ′ in S′ such that (δ, δ′) ∈ γ. It trivially holds that there exists a maximal significant run
δ′′ in S′ such that δ′ is a subrun of δ′′; δ′′ is a maximal extension of δ′ that is significant. By definition,
Π′ represents every run and, thus, every maximal significant run in S′. Therefore, there exists a process π′

of S′ that represents δ′′ and, thus, it represents δ′. Because ψ corresponds to the transformation (S,S′),
there exists a process π of S such that (π,π′) ∈ ψ. Finally, because ψ and γ are compatible, it holds that π
represents δ. ◾

A net system transformation that can be expressed as a sequence of transformations, each taken from a sound
rule, also fits the above proposed design of the untangling algorithm.

Lemma 5.6 (Compositionality). Let (S0, S1) . . . (Sn−1, Sn), n ∈ N, be a sequence of transformations of
bounded net systems. Let ψ1 . . . ψn and γ1 . . . γn be transformation rules such that for every position i ∈ [1 .. n]
it holds that ψi and γi are rules between processes of Si−1 and Si, and runs in Si−1 and Si, respectively, that
correspond to the transformation (Si−1, Si) and are compatible. If Πn is a representative untangling of Sn,
then Π0 ∶= (ψ

−1
1
○ . . . ○ ψ−1n )(Πn) is a representative untangling of S0. ⌟

Proof. By induction on the length k ∈ N of a given sequence of transformations.
base: Let (S0, S1) be a sequence of net system transformations of length k = 1. Then, the statement
holds because of Lemma 5.5 and the fact that ψ1 and γ1 correspond to (S0, S1) and are compatible,
i.e., Π0 ∶= ψ

−1
1
(Π1) is a representative untangling of S0, where Π1 is a representative untangling of S1.



Untanglings: A Novel Approach to Analyzing Concurrent Systems 19

p1

t4 t5

p5
t6

p6 p8

t1 t2

p2
t3

p3 p4

t8

t9

p9

(a)

p1

t4 t5

p5
t6

p6 p8

t1

p2
t3

p4

t8

t9

p9

(b)

Fig. 7. (a) A net system obtained from the net system in Fig. 1(a) via the FST-reduction from t6 to p8, and
(b) a net system obtained from the net system in Fig. 7(a) via the FSP-reduction from p2 to t3.

step: Assume that the statement holds for a sequence of net system transformations (S0, S1) . . . (Sk−1, Sk)
of length 1 ≤ k < n, i.e., it holds that Π0 ∶= (ψ

−1
1
○ . . . ○ψ−1k )(Πk) is a representative untangling of S0, where

Πk is a representative untangling of Sk. Then, the statement must also hold for a sequence of net system
transformations (S0, S1) . . . (Sk, Sk+1). Indeed, according to Lemma 5.5, it holds that Π′k ∶= ψ

−1
k+1(Πk+1) is

a representative untangling of Sk, where Πk+1 is a representative untangling of Sk+1. ◾

5.2. Structural Reductions

This section proposes two sound reduction rules on net systems. These rules allow transforming net systems
into systems with fewer nodes. The names of the proposed rules are due to the names of the rules by Murata,
as they are inspired by transformation rules in [Mur89].

5.2.1. Fusion of Series Transitions

Fusion of series transitions is a reduction rule on net systems that can be used to ‘skip’ a sequence of nodes
composed of a place followed by a transition. The rule is defined as follows.

Definition 5.7 (Fusion of Series Transitions (FST): Net systems).
Let S and S′ be two net systems, where S ∶= (N,M), N ∶= (P,T,F ), M ∶= (K,µ), and S′ ∶= (N ′,M),
N ′ ∶= (P ′, T ′, F ′). A pair (S,S′) is an FST-reduction from a transition t ∈ T to a place p ∈ P iff :
○ there exist a place p′ ∈ P and a transition t′ ∈ T such that ●p′ = {t}, p′● = {t′}, ●t′ = {p′}, t′● = {p}, (t, p) /∈ F ,
∀ k ∈K ∶ µ(k) ≠ p′, and
○ P ′ = P ∖ {p′}, T ′ = T ∖ {t′}, F ′ = (F ∖ {(t, p′), (p′, t′), (t′, p)}) ∪ {(t, p)}.
The FST-reduction rule φA on net systems consists of all FST-reductions on all net systems. ⌟

For example, a transformation (S0, S1), where S0 and S1 are the net systems in Fig. 1(a) and Fig. 7(a),
respectively, is an FST-reduction between S0 and S1 from transition t6 to place p8 (highlighted with grey
background in Fig. 7(a)). Given an FST-reduction (S,S′) ∈ φA on net systems, the next transformation rule
can be used (as it will be demonstrated later) as a rule that corresponds, see Definition 5.2, to (S,S′).

Definition 5.8 (Fusion of Series Transitions (FST): Processes).
Let (S,S′) ∈ φA be an FST-reduction on net systems, where S ∶= (N,M), N ∶= (P,T,F ), and S′ ∶= (N ′,M),
N ′ ∶= (P ′, T ′, F ′). Let π′ ∶= (Nπ′ , ρ

′), Nπ′ ∶= (B
′,E′,G′), be a process of S′, let p ∈ P and t ∈ T be such that

P ′ = P ∖ {p} and T ′ = T ∖ {t}, and let G ∶= {(e, b) ∈ G′ ∣(ρ′(e), ρ′(b)) /∈ F}. A pair (π,π′) is an FST-reduction
to process π′ induced by (S,S′) if and only if π ∶= (Nπ, ρ), where Nπ ∶= (B,E,G), is a pair such that:
○ B = B′∪{bg ∣g ∈ G}, E = E

′∪{eg ∣g ∈ G}, G = (G
′∖G)∪{(e, b(e,b))∣(e, b) ∈ G}∪{(bg, eg)∣g ∈ G}∪{(e(e,b), b)∣

(e, b) ∈ G}, and
○ ρ = ρ′ ∪ {(bg, p)∣g ∈ G} ∪ {(eg, t)∣g ∈ G}.
TheFST-reduction ruleψA on processes induced by (S,S′) consists of all FST-reductions to all processes ofS′. ⌟

Let π and π′ be processes in Fig. 2(c) and Fig. 8, respectively. Then, it holds that (π,π′) ∈ ψA, where ψA is
the FST-reduction rule on processes induced by (S0, S1). Again, S0 and S1 are the net systems in Fig. 1(a)
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Fig. 8. A process of the net system in Fig. 7(a).

and Fig. 7(a), respectively. The reduction takes place between the nodes that are highlighted in Fig. 8. Indeed,
according to Definition 5.8, an FST-reduction on processes can affect several places in the processes under
transformation. Finally, we show that given an FST-reduction (S,S′) ∈ φA on net systems, one can rely on
rule ψA on processes to transform a process of S′ into a process of S.

Proposition 5.9 (Correctness of ψA). Let (S,S′) ∈ φA be an FST-reduction on net systems. If π′ is a
process of S′ and (π,π′) ∈ ψA is an FST-reduction on processes induced by (S,S′), then π is a process of S. ⌟

Proof. (Sketch) Because π′ ∶= (Nπ′ , ρ
′), Nπ′ ∶= (B

′,E′,G′) is a process of S′ ∶= (N ′,M), N ′ ∶= (P ′, T ′, F ′),
and because of Definition 5.8, it holds that Nπ, where π ∶= (Nπ, ρ), Nπ ∶= (B,E,G), is a causal net. Moreover,
π satisfies all the three criteria of a process of S ∶= (N,M), N ∶= (P,T,F ), cf. Definition 2.8:
○ (ρ preserves the nature of nodes). Because π′ is a process of S′, it holds that ρ′ preserves the nature of
nodes. Because of Definition 5.8, it holds that ρ∣dom(ρ′) = ρ

′. Again, because of Definition 5.8, there exist
p ∈ P and t ∈ T such that ∀ b ∈ B ∖B′ ∶ ρ(b) = p and ∀ e ∈ E ∖E′ ∶ ρ(e) = t.
○ (π starts at M). Because of Definition 5.8, i.e., it trivially holds that Min(Nπ) =Min(Nπ′) and ρ∣Min(Nπ) =
ρ′∣Min(N

π
′). Finally, observe that M is the marking in both S and S′.

○ (ρ respects the environment of transitions). Let t, t′ ∈ T and p, p′ ∈ P be such that T = T ′∖{t}, P = P ′∖{p},
{t′} = ●p, and {p′} = t●. Assume that there exists an event e ∈ E for which ρ does not respect the
environment of the corresponding transition. We consider these two cases:
1. (ρ(e) = t). Because of Definitions 5.7 and 5.8, it holds that ●ρ(e) = {p} = ρ(●e) and ρ(e)● = {p′} = ρ(e●).
2. (ρ(e) ≠ t). Again, because of Definitions 5.7 and 5.8, it holds that ●ρ(e) = ρ(●e) and ρ(e)● = ρ(e●). ◾

Given an FST-reduction (S,S′) ∈ φA on net systems, one can use the FST-reduction rule on processes induced
by (S,S′) as a rule that corresponds, cf. Definition 5.2, to (S,S′).

Lemma 5.10 (Correspondence of ψA to (S,S′) ∈ φA).
Let (S,S′) ∈ φA be an FST-reduction on net systems and let ψA be the FST-reduction rule on processes
induced by (S,S′). Then, it holds that ψA corresponds to (S,S′). ⌟

Proof. By Definition 5.8, it holds that for every process π′ of S′ and, thus, for every process of S′ that
represents at least one maximal significant run in S′, there exists (π,π′) ∈ ψA. Moreover, according to
Proposition 5.9, π is a process of S. ◾

Next, we propose a transformation rule between runs in net systems that can be used as a rule that corresponds,
cf. Definition 5.3, to a given FST-reduction on net systems and is compatible, cf. Definition 5.4, with the
respective rule ψA on processes of net systems. We shall make several ‘stops’ on the way to this desired
transformation. The first stop is the notion of a run adaptation rule.

Definition 5.11 (Run adaptation). Let (S,S′) ∈ φA be an FST-reduction on net systems, where S ∶=
(N,M), N ∶= (P,T,F ), and S′ ∶= (N ′,M), N ′ ∶= (P ′, T ′, F ′). Let p ∈ P and t ∈ T be such that P ′ = P ∖ {p}
and T ′ = T ∖ {t}. Finally, let δ be a run in S. A pair (δ, δ′) is a run adaptation on δ induced by (S,S′) if and
only if δ′ is a sequence of steps obtained from δ in two stages (in the specified order):
1. Construct sequence δ′′ from δ by removing all steps (H, t′,H ′) of δ for which it holds that t′ = t, without
changing the order of the remaining steps.

2. Construct sequence δ′ from δ′′ by replacing every element p with a fresh element p′ in H and H ′ of every
step (H, t′,H ′) of δ′′, where t● = {p′}.

The run adaptation rule γα on runs induced by (S,S′) consists of all run adaptations on all runs in S. ⌟

Given an FST-reduction (S,S′) ∈ φA on net systems, one can use γα to transform a run in S into a run in S′.
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Proposition 5.12 (Correctness of γα).
Let (S,S′) ∈ φA be an FST-reduction on net systems. If δ is a run in S and (δ, δ′) ∈ γα is a run adaptation
induced by (S,S′), then δ′ is a run in S′. ⌟

Proof. (Sketch) By induction on the length k ∈ N0 of δ.
base: Let δ be empty, i.e., k = 0. Then, δ′ is also empty and, thus, is a run in S′.
step: Let us assume that the statement holds for δ ∶= χ1 . . . χk, k ≥ 0, i.e., it holds that δ′ is a run in
S′ ∶= (N ′,M), N ′ ∶= (P ′, T ′, F ′). Let κ ∶= δ + χk+1, where χk+1 ∶= (H, t

′,H ′), be a run in S ∶= (N,M),
N ∶= (P,T,F ), and let (κ,κ′) ∈ γα. Finally, let p ∈ P and t ∈ T be such that P ′ = P ∖ {p} and T ′ = T ∖ {t}.
We consider these three cases:
1. (t = t′). If t = t′, then because of Definition 5.11 it holds that κ′ = δ′ and, thus, κ′ is a run in S′.
2. (t ≠ t′, p ∈H, and p /∈H ′). This case is not possible as it must hold that t = t′.
3. (t ≠ t′, and p /∈H or p ∈H ′). Because of Definitions 5.7 and 5.11, it holds that κ′ is a run in S′. ◾

The next stop towards the desired transformation on runs is a transformation that given a run δ in a net
system S constructs a significant run in S which is composed of all distinct steps of δ.

Definition 5.13 (Insignificance reduction). Let δ ∶= χ1 . . . χn, n ∈ N0, be a run in a net system.
○ A one step insignificance reduction (between i and j) of δ is applicable if and only if there exist positions i
and j in δ, i < j, such that χi = χj , and for each position k in δ, i < k < j, it holds that step χk is equal to
some step χm of δ, where m < i or j <m.
○ An application of the reduction between i and j results in a fresh run δ′ ∶= (χ1. . .χi) + (χj+1. . .χn). ⌟

It is easy to see that one eventually obtains a significant run by utilizing one step insignificance reductions on
an input run (one after another as long as they are applicable). Observe that one may end up with different
significant runs by applying different (in terms of different positions between which reductions are applied)
sequences of one step insignificance reductions. By Λδ, we denote the set of all significant runs that can be
obtained from a given run δ through different sequences of one step insignificance reductions.

Considering the above, a suitable transformation rule on runs can be defined as follows.

Definition 5.14 (Run adjustment).
Let (S,S′) ∈ φA be an FST-reduction on net systems and let δ be a run in S.
○ A pair (δ, δ′) is a run adjustment on run δ induced by (S,S′) if and only if there exists a run δ′′ in S′ such
that (δ, δ′′) ∈ γα is a run adaptation and it holds that δ′ ∈ Λδ′′ .
○ The run adjustment rule γβ on runs induced by (S,S′) consists of all run adjustments on all runs in S. ⌟

Given an FST-reduction (S,S′) ∈ φA on net systems, one can use the run adjustment rule induced by (S,S′)
as a rule that corresponds, cf. Definition 5.3, to (S,S′).

Lemma 5.15 (Correspondence of γβ to (S,S′) ∈ φA).
Let (S,S′) ∈ φA be an FST-reduction on net systems and let γβ be the run adjustment rule induced by
(S,S′). Then, it holds that γβ corresponds to (S,S′). ⌟

Proof. By Definition 5.14, it holds that for every run δ in S and, thus, for every maximal significant run in S,
there exists a run δ′ in S′ such that (δ, δ′) ∈ γβ . According to Proposition 5.12 and Definition 5.14, δ′ is a
significant run in S′. ◾

The next statement claims that transformation rules ψA and γβ are compatible, cf. Definition 5.4.

Lemma 5.16 (Compatibility of ψA and γβ). Let (S,S′) ∈ φA be an FST-reduction on net systems, and
let ψA and γβ be the FST-reduction rule on processes induced by (S,S′) and the run adjustment rule induced
by (S,S′), respectively. Then, it holds that ψA and γβ are compatible. ⌟

Proof. (Sketch) Let us assume that ψA and γβ are incompatible. Then, there exist (π,π′) ∈ ψA and (δ, δ′) ∈ γβ
such that π′ represents δ′ but π does not represent δ, i.e., there exists a step χ ∶= (H, t,H ′) of δ that π does
not represent. Let S ∶= (N,M), N ∶= (P,T,F ), S′ ∶= (N ′,M), N ′ ∶= (P ′, T ′, F ′), and let p′, p′′ ∈ P and t′ ∈ T
be such that P ′=P ∖{p′}, T ′=T ∖ {t′}, and {p′′} = t′●. We consider these two cases:

1. (χ is a step of δ′). It follows immediately from Definition 5.8 that π represents χ.
2. (χ is not a step of δ′). We consider these two subcases:
(a) (There exists a step χ′ of δ′ that represents an occurrence of t).
Let χ′ ∶= (Q, t,Q′). We consider these three subcases:
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(i) (H = Q, H ′ ≠ Q′, and Q′ can be obtained from H ′ by replacing every element p′ with p′′). Because
of Definition 5.8, π represents χ. Then, there exists a cut C and an event e in π such that C induces
H and e represents an occurrence of t.

(ii) (H ′ = Q′, H ≠ Q, and Q can be obtained from H by replacing every element p′ with p′′). It must
hold that t = t′ and, thus, because of Definition 5.14, there exists no step χ′ of δ′.

(iii) (H ≠ Q, H ′ ≠ Q′, and Q and Q′ can be obtained from H and H ′, respectively, by replacing every
element p′ with p′′). Because of Definition 5.8, π represents χ. Then, there exists a cut C and an event
e in π such that C induces H and e represents an occurrence of t.

(b) (There exists no step χ′ of δ′ that represents an occurrence of t). It must hold that t = t′. There exists
a step χ′ ∶= (Q, t∗,Q′) of δ′ such that either Q = H ′ or Q′ = H ′. Thus, there exists a cut C in π′ that
induces H ′. Then, there exists a cut C ′ in π that induces H ′. Finally, because of Definition 5.8, it is easy
to see that π represents χ. ◾

We conclude this section with a claim that the FST-reduction rule on net systems is sound.

Lemma 5.17 (Soundness of φA). The FST-reduction rule φA on net systems is sound. ⌟

Proof. Let (S,S′) ∈ φA be an FST-reduction on net systems. Let ψA be the FST-reduction on processes of net
systems and let γβ be the run adjustment rule; both induced by (S,S′). According to Lemmas 5.10 and 5.15,
rules ψA and γβ correspond to (S,S′). Finally, according to Lemma 5.16, rules ψA and γβ are compatible. ◾

5.2.2. Fusion of Series Places

Fusion of series places is a reduction rule on net systems that can be used to ‘skip’ a sequence of nodes
composed of a transition followed by a place. The precise definition of the rule proceeds as follows.

Definition 5.18 (Fusion of Series Places (FSP): Net systems).
Let S and S′ be two net systems, where S ∶= (N,M), N ∶= (P,T,F ), M ∶= (K,µ), and S′ ∶= (N ′,M),
N ′ ∶= (P ′, T ′, F ′). A pair (S,S′) is an FSP-reduction from a place p ∈ P to a transition t ∈ T iff :
○ there exist a place p′ ∈ P and a transition t′ ∈ T such that ●t′ = {p}, t′● = {p′}, ●p′ = {t′}, p′● = {t},
(p, t) /∈ F , (∣p ● ∣ = 1 or ∣ ● t∣ = 1), ∀k ∈K ∶ µ(k) ≠ p′, and
○ P ′ = P ∖ {p′}, T ′ = T ∖ {t′}, F ′ = (F ∖ {(p, t′), (t′, p′), (p′, t)}) ∪ {(p, t)}.
The FSP-reduction rule φB on net systems consists of all FSP-reductions on all net systems. ⌟

For example, a transformation (S1, S2), where S1 and S2 are the net systems in Fig. 7(a) and Fig. 7(b),
respectively, is an FSP-reduction from place p2 to transition t3 (highlighted with grey background in Fig. 7(b)).
Given an FSP-reduction (S,S′) ∈ φB on net systems, the next transformation rule can be used as a rule that
corresponds, see Definition 5.2, to (S,S′).

Definition 5.19 (Fusion of Series Places (FSP): Processes).
Let (S,S′) ∈ φB be an FSP-reduction on net systems, where S ∶= (N,M), N ∶= (P,T,F ), and S′ ∶= (N ′,M),
N ′ ∶= (P ′, T ′, F ′). Let π′ ∶= (Nπ′ , ρ

′), Nπ′ ∶= (B
′,E′,G′), be a process of S′, let p ∈ P and t ∈ T be such that

P ′ = P ∖ {p} and T ′ = T ∖ {t}, let G ∶= {(b, e)∈G′ ∣(ρ′(b), ρ′(e)) /∈ F}, and let B ∶= {c ∈ B′ ∣c● = ∅ ∧ t ∈ ρ(c)●}.
A pair (π,π′) is an FSP-reduction to process π′ induced by (S,S′) if and only if π ∶= (Nπ, ρ), where
Nπ ∶= (B,E,G), is a pair such as:
○ B = B′ ∪ {bg ∣g ∈ G} ∪ {bc ∣c∈ B},E = E

′ ∪ {eg ∣g ∈G} ∪ {ec ∣c∈B},G = (G
′∖ G) ∪ {(b, e(b,e))∣(b, e) ∈ G}

∪ {(eg, bg)∣g ∈ G} ∪ {(b(b,e), e)∣(b, e) ∈ G} ∪ {(c, ec)∣c ∈ B} ∪ {(ec, bc)∣c ∈ B}, and
○ ρ = ρ′ ∪ {(bg, p)∣g ∈ G} ∪ {(eg, t)∣g ∈ G} ∪ {(bc, p)∣c ∈ B} ∪ {(ec, t)∣c ∈ B}.
TheFSP-reduction ruleψB on processes induced by (S,S′) consists of all FSP-reductions to all processes ofS′. ⌟

The proof of the fact that the FSP-reduction rule φB on net systems is sound proceeds similar to the proof
of Lemma 5.17 with a minor difference that it relies on rule ψB on processes, cf. Definition 5.19, and rule
γβ on runs in net systems, cf. Definition 5.14. Note that one can prove that rules ψB and γβ correspond to
an FSP-reduction on net systems and that they are compatible similar to the proofs of Lemmas 5.10, 5.15,
and 5.16, changing those things that need to be changed.
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Fig. 9. A net system obtained from the net system in Fig. 7(b) via the FSP-reduction from p2 to t9.

5.3. Algorithm

This section organizes all the above proposed results in an alternative technique for computing representative
untanglings. Given a repertoire, i.e., a set, of sound transformation rules Φ on net systems, the baseline
construction of a representative untangling of a bounded net system S0 can be augmented as follows. Firstly,
S0 gets transformed into a net system Sn via a sequence of transformations κ ∶= (S0, S1) . . . (Sn−1, Sn),

n ∈ N, where each transformation belongs to some rule in Φ. Secondly, a representative untangling RSn

b of

Sn is constructed using Algorithm 2. Finally, the set (ψ−1
1
○ . . . ○ ψ−1n )(R

Sn

b ) is a representative untangling

of S0, denoted by RS0

κ , where ψ1 . . . ψn correspond to transformations (S0, S1) . . . (Sn−1, Sn), respectively.
Termination of the outlined algorithm is guaranteed by the finiteness of κ and the proof of termination of
Algorithm 2, whereas correctness is guaranteed by Lemma 5.6 and the proof of correctness of Algorithm 2.

Given a bounded net system S, the construction of RS
κ depends on κ, i.e., different sequences of

transformations usually lead to different representative untanglings. However, it is easy to see that if one
constructs κ as long as possible by using rules from the repertoire Φ ∶= {φA, φB}, in any order, one always
ends up with the same set RS

κ (if ψA and ψB are used as rules that correspond to φA and φB , respectively).
Next, we exemplify the transformation-based untangling technique by constructing a representative

untangling of the net system in Fig. 1(a). Firstly, one needs to come up with a sequence of transformations on
the given net system, where each transformation must belong to a sound transformation rule. It is intended that
the transformations reduce the net system structurally. For example, the sequence κ ∶= (S0, S1)(S1, S2)(S2, S3),
where S0, S1, S2, and S3 are the net systems in Figs. 1(a), 7(a), 7(b), and 9, respectively, is a sequence
of transformations that reduces S0 to S3. It holds that (S0, S1) ∈ φA and (S1, S2), (S2, S3) ∈ φB, refer to
Section 5.2. Observe that S3 is obtained from S2 via the FSP-reduction from place p2 to transition t9
(highlighted with grey background in Fig. 9). Thus, all transformations of κ belong to sound transformation

rules. Secondly, a representative untangling RS3

b of S3 must be constructed. We rely on Algorithm 2 to
accomplish this step. Algorithm 2 proceeds by discovering all the five maximal significant runs in S3:

δ0 ∶= p1 [t1⟩p2 p6 [t6⟩p2 p8 [t9⟩p9,
δ1 ∶= p1 [t4⟩p2 p5 [t5⟩p2 p6 [t6⟩p2 p8 [t9⟩p9,
δ2 ∶= p1 [t1⟩p2 p6 [t6⟩p2 p8 [t8⟩p2 p5 [t5⟩p2 p6 [t6⟩p2 p8 [t9⟩p9,
δ3 ∶= p1 [t4⟩p2 p5 [t5⟩p2 p6 [t6⟩p2 p8 [t8⟩p2 p5 [t5⟩p2 p6 [t6⟩p2 p8 [t9⟩p9, and
δ4 ∶= p1 [t1⟩p2 p6 [t6⟩p2 p8 [t8⟩p2 p5 [t5⟩p2 p6 [t6⟩p2 p8 [t8⟩p2 p5.

Algorithm 2 uses the above five runs to construct five process in RS3

b . Finally, the set RS0

κ that is defined as

(ψ−1A ○ ψ
−1
B ○ ψ

−1
B )(R

S3

b ), where ψA and ψB are transformations on processes of net systems that correspond
to transformations drawn from rules φA and φB, respectively (refer to Section 5.2.1 and Section 5.2.2 for
details), is a representative untangling of S0. The set RS0

κ contains the five processes shown in Figs. 2 and 4.

Recall that the set RS0

b contains 352 processes. Indeed, it holds that ∣RS0

κ ∣≪ ∣R
S0

b ∣.

6. Related Work

An untangling of a concurrent system is a mathematical formalism that can be used to describe and analyze
the behavior of that system. In this section, we discuss several other formalisms that address the same
problem and point out some of the differences between these formalisms and the one of untangling.
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One can use state space techniques when it comes to the automatic analysis and verification of concurrent
systems. Rather than performing analysis directly on a net system, state space techniques explore an induced
representation, called a transition system. In a nutshell, a transition system induced by a net system S is a
directed graph with all the states reachable from S as its nodes and directed edges that encode possible state
transitions, i.e., there is an edge in the graph from state H to state H ′ whenever there is a step in S that
leads from H to H ′. Unfortunately, state space techniques suffer from the well-known state space explosion
problem. In the worst case, all nodes of the induced transition system must be explored to accomplish the
envisioned analysis task. This often turns out to be infeasible due to the large size of the transition system.

An unfolding of a concurrent system is a mathematical structure (often infinite) that explicitly represents
causality and concurrency relations on operations of the system, as well as all the points of choice between
qualitatively different behaviors of the system. Unfoldings are special acyclic graphs that describe states
that are reachable from a net system as combinations of nodes rather than dedicating every node to a single
state. In [McM92, McM95], Ken McMillan observed that one can represent all the information contained
in an unfolding in its truncated finite initial part, which is often called a finite prefix of the unfolding. If
adequate construction algorithms are employed, the size of a finite prefix of the unfolding of a concurrent
system is never larger – and in practice is by far smaller – than the size of the transition system induced by
the same net system. A classic condition for prefix truncation is completeness, where a prefix induced by
a concurrent system is complete if it encodes all the steps (reachable states and possible state transitions)
in the system. Completeness of prefixes helps to ‘unveil’ some of the behavioral properties of concurrent
systems by allowing their validation in time that is linear in the size of a given finite complete prefix, e.g., any
executability problem [ERV02, EH08] can be solved efficiently using a finite complete prefix of the net system,
while keeping other properties sufficiently ‘concealed’, e.g., the problem of deciding deadlock freedom [MR97]
of a net system using a finite complete prefix of this system is known to be NP-complete [McM95]. One can
rely on special unfolding truncation criteria in order to unveil other behavioral properties in finite parts of
unfoldings. In [EH08], truncation criteria that address executability, repeated executability, livelock, and
properties expressible in linear temporal logic, are systematized. The strong coupling of behavioral properties
of concurrent systems with different configurations of finite prefixes of their unfoldings is mainly due to
implicit dependencies between transition occurrences which stem from unfolding truncations.

Merged processes, which are studied in [KKKV06, KM11, RSK13], are compressed representations of
finite prefixes of unfoldings with most of the discussed above advantages and disadvantages of finite prefixes
of unfoldings. The compression in merged processes is achieved by addressing such causes of the state space
explosion as sequences of choices and unsafeness. Many analysis results that were initially proposed for finite
prefixes of unfoldings can be transferred to merged processes.

In [Des00], Jörg Desel suggests using processes of net systems for analysis of concurrent systems. As
net systems can induce infinite processes, Desel proposes several termination conditions to limit the size
of processes. One option is to use a bound in terms of the number of created events and conditions or in
terms of construction time. Unfortunately, this simple method does not guarantee that all the behavior of
the net system is explored before triggering the termination condition. As a consequence, any analysis on
the set of all – discovered in such a way – processes cannot be considered exhaustive. Alternatively, if one
decides to distinguish between internal and external actions of a concurrent system, one can further decide to
terminate construction of a process of the corresponding net system if the last appended event describes an
occurrence of a transition that leads to a state that does not enable any internal action (this corresponds to
a situation when the concurrent system waits for an external trigger in order to progress). Unfortunately,
given a net system, it is unknown beforehand whether this termination condition will eventually be fulfilled
in the system and, hence, it only fits very specific analysis situations, or must be further constrained to
guarantee termination. Finally, Desel proposes to terminate construction of a process if its last appended
event corresponds to an occurrence of a transition that leads to a state which was already observed during
construction of this process or some other process of the same net system. If the net system is bounded, this
condition guarantees termination. The same and stronger termination conditions were previously used for
truncating infinite unfoldings of net systems [McM95, ERV02]. In fact, every finite complete prefix of the
unfolding of a net system S is a compact representation of a set of all processes of S truncated according to
this, or a stronger, termination condition and exhaustively merged based on their isomorphic histories.

Every process in an untangling can be seen as a scenario, i.e., a behavioral requirement that describes
interdependencies between actions that can occur in the system. In [Fah10, Rei13], scenarios are proposed
as a feature to specify behavior of a system. In this context, our work suggests a technique to decompose a
given system into a set of its scenarios that collectively specify all and only the behavior of the system.



Untanglings: A Novel Approach to Analyzing Concurrent Systems 25

c1

e4

e5

c5 c'6

e'2

c'2

e'3

c'3 c'4

e6

c6

e7

c7 c8

e2

c2

e3

c3 c4

e9

c9

e1

e8

c'5

Fig. 10. A finite complete prefix of the unfolding of the net system in Fig. 1(a).

Both unfoldings and untanglings are acyclic graphs that encode causality and concurrency relations
on transition occurrences. Thus, fundamentally, untanglings address the state space explosion problem to
a similar extent as unfoldings. Furthermore, similar to a finite prefix of the unfolding of a net system S,
a representative untangling of S is a finite model that describes all the steps in S, i.e., all the transition
occurrences that are possible from all the states reachable from S. However, in contrast to a finite prefix of
the unfolding of S, a representative untangling of S suggests dedicated scopes for analysis of properties that
target individual runs in S, i.e., every run in S is represented by some process in a representative untangling
of S. This result is due to a special termination condition for process construction that limits the size of
processes in representative untanglings, cf. Definition 4.3. Several benefits of using representative untanglings
for describing concurrent systems are explored in the next section.

7. Evaluation

This section ascertains the value of representative untanglings. It illustrates their unique properties, as
compared to artifacts studied by the theory of unfoldings, i.e., finite complete prefixes (of unfoldings) of net
systems, and demonstrates practical benefits that stem from the use of representative untanglings. The next
section contrasts representative untanglings with finite complete prefixes by comparing running times and
output artifacts of the reduction-based untangling algorithm (see Section 5.3) and the finite complete prefix
algorithm for 1-bounded net systems proposed in [ERV02]. In the subsequent sections, we propose several
methods for deciding various behavioral properties of net systems using their representative untanglings and
compare computational complexities and running times of these methods with computational complexities
and running times of their counterpart techniques that rely on the use of finite complete prefixes. In particular,
the behavioral properties addressed are executability, deadlock freedom, and mutual exclusiveness. The results
of this evaluation confirm the feasibility and benefits of using representative untanglings in practice.

The evaluation was carried on a real-life collection of 448 net systems (more precisely workflow nets)
that model processes from the domains of finance and telecommunication. They were selected from the BIT
Library [FFK+11]. Net systems that are unsafe were filtering out; a net system is safe iff it is 1-bounded.
All the experiments were implemented in Java and performed on a laptop with Intel Core i7-3667U CPU
2.00GHz, 8GB of memory, running Windows 7 and Sun JVM 1.7 (with standard allocation of memory).

7.1. Size and Construction Time

In Section 6, we pointed out that representative untanglings have commonalities with finite complete prefixes
of unfoldings. Similar to a representative untangling, a finite complete prefix of a net system is a finite acyclic
net that encodes the behavior of the corresponding net system. Fig. 10 shows a finite complete prefix of
the net system S in Fig. 1(a). This and all the finite complete prefixes constructed in our experiments are
generated using the total adequate order for safe systems proposed in [ERV02]. In the prefix, event e5 is a
cutoff event (highlighted with grey background). Event e5 and its corresponding event e1 (the relation is
denoted by a dotted arrow) are associated with equivalent reachable markings that put one token at place p2,
one token at place p6, and no tokens elsewhere. In the figure, these markings are encoded as sets of conditions
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(b)

Fig. 11. Experimental results of computing finite complete prefixes and representative untanglings of 448 net
systems taken from practice: (a) number of nodes in constructed artifacts and (b) construction time.

that overlap with dashed lines; refer to [McM95, ERV02] for more information on how events of unfoldings
are associated with reachable markings of the corresponding net system. Intuitively, the finite complete prefix
in Fig. 10 can be constructed starting from the initial marking of S, i.e., from condition c1 that encodes
the marking with the only token at place p1, then iteratively appending events that encode occurrences of
transitions (in the order that they can occur in the system), and terminating the construction at cutoff event
e5 as information on transition occurrences that follow e5 is already contained in the part of the prefix that
follows its corresponding event e1. Similarly, cutoff event e8 and its corresponding event e4 encode equivalent
markings that put one token at place p2, one token at place p5, and no tokens elsewhere; the respective sets
of conditions are denoted by dash-dotted lines in the figure.

Both the baseline and the reduction-based untangling techniques have been implemented and are publicly
available as part of the jBPT initiative [PW13].10 Using this implementation, we conducted an experiment to
assess performance of the reduction-based untangling technique in terms of construction times and sizes of
the produced outputs. To eliminate load times from the measurements, each experiment was executed six
times, and we recorded average times of the second to sixth executions.

Fig. 11 summarizes the results of this test, which can be downloaded and reproduced.11 Fig. 11(a) reports
on the sizes (as measured by the number of nodes) of constructed representative untanglings and finite
complete prefixes of the 448 net systems. The non-shaded diamonds encode sizes of representative untanglings,
while the shaded ones specify sizes of finite complete prefixes. The sizes of net systems from the collection
range from 23 to 276 nodes, with the average size being 63.75 nodes. The average size of a finite complete
prefix is 91.24 nodes, whereas the average size of a representative untangling is 371.1 nodes. On average,
constructed finite complete prefixes and representative untanglings are 1.3 and 3.54 times larger than the
corresponding net systems, respectively. The size of a finite complete prefix of a net system is on average
67.39% of the size of a representative untangling of the same net system. Furthermore, we observed that on
average, constructed representative untanglings contain 6.22 processes. Similarly, Fig. 11(b) reports on the
times of constructing finite complete prefixes and representative untanglings. According to our tests, the
average time spent on constructing a finite complete prefix is 1.57 milliseconds, while the average time spent
on constructing a representative untangling is 2.83 milliseconds.12

7.2. Executability

Finite complete prefixes have proven their advantage when verifying behavioral properties of concurrent
systems. For example, given a net system S, the executability problem, which consists of deciding whether

10 http://code.google.com/p/jbpt
11 http://code.google.com/p/jbpt/wiki/UntanglingsExperiment
12 Uma is used to construct finite complete prefixes of unfoldings: http://service-technology.org/tools/uma
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there exists an occurrence sequence in S of which every transition out of a given set of transitions is an
element, can be solved in a time that is linear in the size of a finite complete prefix of S [EH08]. More
precisely, if a transition t is an element of some occurrence sequence in S, then a finite complete prefix of S
contains an event that describes an occurrence of t. For example, using events of the finite complete prefix in
Fig. 10 and the above described rationale, one can trivially conclude that for every transition t of the net
system in Fig. 1(a) there exists an occurrence sequence in this net system of which t is an element.

The executability problem is a fundamental problem in concurrency theory as many other problems
can be reduced to it, e.g., a solution to the executability problem can help deciding reachability and
safety [EH08, GW93]. The executability problem can be formulated as follows.

Definition 7.1 (Executability). A net system S ∶= (N,M), N ∶= (P,T,F ), can execute some transition
in U ⊆ T iff there exist an occurrence sequence σ in S and a transition t ∈ U such that t is an element of σ. ⌟

One can use representative untanglings to solve the executability problem.

Lemma 7.2 (Executability). Let Π be a representative untangling of a net system S ∶= (N,M), N ∶=
(P,T,F ). Then, S can execute some transition in U ⊆ T iff there exist a process π ∈ Π, π ∶= (Nπ, ρ),
Nπ ∶= (B,E,G), and an event e ∈ E such that ρ(e) ∈ U . ⌟

Proof. We prove each direction of the statement separately.
(⇒) Assume that there exists an occurrence sequence that contains t ∈ U as an element. Then, there exists a
run δ in S that contains a step χ ∶= (H, t,H ′). According to Definition 4.1, there exists a process π ∈ Π,
π ∶= (Nπ, ρ), Nπ ∶= (B,E,G), that represents every step of δ. Then, π represents χ and, thus, contains an
event e ∈ E such that ρ(e) ∈ U .

(⇐) Assume that there exist a process π ∈ Π, π ∶= (Nπ, ρ), Nπ ∶= (B,E,G), and an event e ∈ E such that
ρ(e) ∈ U . According to Lemma 1 in [Des00], there is a run in S which contains a step that describes an
occurrence of ρ(e). Thus, there is an occurrence sequence in S which contains ρ(e) as an element. ◾

Therefore, similar to finite complete prefixes, representative untanglings can be employed to solve the
executability problem efficiently.

Proposition 7.3 (Executability).
Given a representative untangling Π of a net system S ∶= (N,M), N ∶= (P,T,F ), the following problem can
be solved in linear time on Π: To decide if S can execute some transition in U ⊆ T . ⌟

The proof of Proposition 7.3 is a direct consequence of Lemma 7.2. Given a net system S and a subset of its
transitions U , one can verify whether S can execute some transition in U by visiting events of a representative
untangling of S (such that each event is visited at most once) until none of the visited events describes an
occurrence of some transition in U . The linear time complexity reported in Proposition 7.3 assumes that the
set membership operation can be performed in constant time, e.g., as a search in a hash table. For example,
using events of the five processes in Figs. 2 and 4, one can decide that the net system S in Fig. 1(a) can
execute some transition in every non-empty subset of transitions of S; recall that the five processes in Figs. 2
and 4 constitute a representative untangling of S.

Fig. 12 reports average times spent when solving executability problems on representative untanglings
(rep. unt.) and on finite complete prefixes of unfoldings (FCP of unf.) of the 448 net systems under evaluation.
Fig. 12(a), Fig. 12(b), and Fig. 12(c), show the average times spent on solving executability problems on
input sets that consist of one, six, and eleven transitions, respectively; note that the smallest net in the
collection has eleven transitions. For a given number n of transitions and a given net system S, n transitions
of S are randomly selected and the time required for solving the executability problem for these transitions is
computed. The average value for this combination of number n and net system S is determined by taking
the average of 1000 repetitions of this procedure. Fig. 12(d) shows the average times spent on solving the
executability problems for all 448 net systems in the collection for different sizes of input sets of transitions.
Again, for a given number n of transitions and a net system S, n transitions of a net system are randomly
selected and the time required for solving the executability problem for these transitions is computed. The
average value for this number n is obtained by taking the average of 448 values of time spent on executing
the above described procedure (one value for every net system in the collection).

Because solutions to the executability problem have linear time complexity, both on representative
untanglings and on finite complete prefixes, and considering that representative untanglings are never smaller
than finite complete prefixes (refer to Section 7.1), it does not come as a surprise that the times spent
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Fig. 12. Average times of deciding executability using finite complete prefixes and representative untanglings:
(a) with an input set that contains one transition, (b) with an input set that contains six transitions, (c) with
an input set that contains eleven transitions, and (d) over all net systems in the collection.

on deciding executability based on finite complete prefixes are often smaller than those on representative
untanglings. However, the measurements also show that with the growth of the size of input sets of transitions
this difference becomes negligible. We observed that certain decisions based on representative untanglings
were carried out faster than those based on finite complete prefixes. These are the cases when visited parts of
the untanglings turned out to be smaller than visited parts of the respective finite complete prefixes.

Given a net system S and a subset of its transitions U , one can check if S can execute some transition
in U by verifying whether U overlaps with the set of all transitions that are elements of all occurrence
sequences in S. Clearly, this set consists only of those transitions that are described by at least one event of a
representative untangling of S or, similarly, by at least one event of a finite complete prefix of S. For the
net systems under evaluation, on average such sets were constructed in 18 and 33 microseconds using finite
complete prefixes and representative untanglings, respectively.

The performed tests hint at the fact that differences between running times of techniques for solving
decision problems of the same time complexity which operate on representative untanglings and finite complete
prefixes can often be negligible in practice. Further experiments are required to justify this claim.

In [PLtH14], we introduced the total executability problem. Given a net system S and a subset of its
transitions U , the total executability problem consists of deciding whether there exists an occurrence sequence
in S of which every transition in U is an element. We showed that this problem can be solved efficiently
using a representative untangling of S and hinted at the fact that the proposed solution can be of help when
designing automated retrieval systems that query for behavioral information in collections of process models.

7.3. Deadlock freedom

Another important problem in concurrency theory is the deadlock freedom problem. It deals with answering
the question whether there exists a deadlock marking reachable from a given net system.
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Fig. 13. Average times of deciding deadlock freedom using finite complete prefixes and representative
untanglings: (a) decision times and (b) times spent to construct auxiliary artifacts plus decision times.

Definition 7.4 (Deadlock freedom). A marking M of a net N ∶= (P,T,F ) is a deadlock marking iff there
exists no transition t ∈ T that is enabled in (N,M). A net system S ∶= (N,M) is deadlock free iff there exists
no deadlock marking of N reachable from S. ⌟

The problem of deciding deadlock freedom of a bounded net system S is known to be NP-complete on a finite
complete prefix of the unfolding of S [McM95, MR97]. Alternatively, one can use a representative untangling
of S to decide deadlock freedom.

Lemma 7.5 (Deadlock freedom).
Let Π be a representative untangling of a net system S ∶= (N,M). S is deadlock free iff for every process
π ∶= (Nπ, ρ) in Π it holds that (C,ρ∣C), where C ∶=Max(Nπ), is not a deadlock marking of N . ⌟

Proof. We prove each direction of the statement separately.
(⇒) If S is deadlock free then every marking that is reachable from S is not a deadlock marking of N .
Because every maximal cut of every process in Π corresponds to some marking that is reachable from
S, refer to Theorem 2.9 for details, it trivially holds that all maximal cuts of all processes in Π do not
correspond to deadlock markings.

(⇐) Assume that for every process π ∶= (Nπ, ρ) in Π it holds that (C,ρ∣C), where C ∶= Max(Nπ), is not
a deadlock marking of N , but S is not deadlock free. Then, there exists a deadlock marking M ′ of N
reachable from S via some run δ in S. There also exists a process π ∶= (Nπ, ρ) in Π that represents δ,
Nπ ∶= (B,E,G). Because π represents every step of δ, it holds that there exists a cut C ′ of Nπ that
corresponds to marking M ′. If C ′ is not the maximal cut of Nπ, then M

′ is not a deadlock marking of N
(M ′ enables some transition ρ(e), where e ∈ E and ●e ⊆ C ′). Then, it holds that C ′ is the maximal cut of
Nπ, which leads to a contradiction. ◾

It is easy to see that deadlock freedom of a net system S can be decided efficiently on a representative
untangling of S.

Proposition 7.6 (Deadlock freedom). Given a representative untangling Π of a net system S, the fol-
lowing problem can be solved in linear time on Π: To decide if S is deadlock free. ⌟

The proof of Proposition 7.6 is a direct consequence of Lemma 7.5. Indeed, to check deadlock freedom of S it
suffices to test if the maximal cut of some process of a representative untangling of S induces a deadlock
marking. This check can be accomplished during a single scan through all conditions of the representative
untangling. For example, one can decide that the net system S in Fig. 1(a) is not deadlock free based on
the maximal cut D3 ∶= {c9} of the causal net in Fig. 4(a). This cut induces a deadlock marking of the net in
Fig. 1(a) which puts one token at place p9 and no tokens elsewhere; recall that the process in Fig. 4(a) is one
out of the five processes shown in Figs. 2 and 4, which together constitute a representative untangling of S.

Fig. 13 reports average times (on a logarithmic scale) of deciding deadlock freedom for each of the 448
net systems under evaluation based on representative untanglings (rep. unt.) and finite complete prefixes of



30 A. Polyvyanyy, M. La Rosa, C. Ouyang, and A.H.M. ter Hofstede

unfoldings (FCP of unf.). The checks on finite complete prefixes follow the linear algebraic approach proposed
in [MR97]. The implementation relies on LpSolve ver. 5.5.2.0 when solving systems of inequalities.13 Fig. 13(a)
suggests the times spent to carry out the decisions considering that representative untanglings and finite
complete prefixes are already constructed, whereas Fig. 13(b) shows overall times spent to decide deadlock
freedom, i.e., the times spent on constructing auxiliary artifacts (either representative untanglings or finite
complete prefixes) plus the times spent to carry out the decisions based on the subsequent checks on the
respective artifacts. To eliminate load times from the measurements, each deadlock freedom problem was
solved six times, and we recorded average times spent on the second to sixth problem solving exercise. On
average, it took 89.99 microseconds and 15.66 milliseconds to decide deadlock freedom based on representative
untanglings and finite complete prefixes, respectively. When taking the times spent on constructing the
auxiliary artifacts into account, the average times of checking deadlock freedom increase to 2.92 and 17.23
milliseconds, respectively.

In most of the cases, the checks based on representative untanglings outperform by far the checks that
rely on the use of finite complete prefixes. The significant difference between decision times on representative
untanglings and finite complete prefixes, refer to Fig. 13(a), confirms that most of the value when using
representative untanglings comes from their reuse for checking multiple behavioral properties, e.g., once a
representative untangling of a net system is constructed it can be used to decide deadlock freedom but also
to solve an arbitrary number of instances of the executability problem.

7.4. Mutual Exclusiveness

Together with the studies of fundamental problems in concurrency theory, such as the executability problem
and the deadlock freedom problem, much of attention of researchers has been devoted to decidability issues
for specification languages in which a large number of behavioral properties can be expressed. In particular,
given a model of a system, model checking studies the problem of automatically checking whether the model
satisfies a behavioral property specified in a language that often takes the form of a temporal logic. Linear
time logics [Pnu77] for Petri nets form a class of temporal logics that are usually interpreted on maximal
computations. One behavioral phenomenon that can be conveniently expressed in terms of a linear time logic
is mutual exclusiveness of events, or the conflict relation, which is one of the fundamental behavioral relations
as classified by the 4C spectrum [PWC+14]. In general, two events are mutually exclusive if they cannot
occur together. For instance, two events of observing heads or tails when tossing a coin are mutually exclusive.
The phenomenon of mutual exclusiveness of events can be adapted to events that describe occurrences of
transitions and can consequently be characterized on transitions of Petri nets as follows.

Definition 7.7 (Mutual exclusiveness).
Let S ∶= (N,M), N ∶= (P,T,F ), be a net system. Transitions t1 ∈ T and t2 ∈ T are mutually exclusive in S
iff for every occurrence sequence σ in S it holds that either t1 or t2 is not an element of σ. ⌟

For a transition t ∈ T it trivially holds that t is mutually exclusive with itself if and only if t is not an element
of any occurrence sequence in S. Clearly, mutual exclusiveness is a symmetric relation.

One can rely on finite complete prefixes when model checking behavioral properties of corresponding
net systems, e.g., mutual exclusiveness of transitions. Given a net system S and a linear temporal logic
formula, a common approach is to augment S with a Büchi tester [EH08] (a new component added to S) in
order to observe and register occurrences of certain transitions in a finite complete prefix of the unfolding
of the augmented net system. These transition occurrences signify violations of the property specified in
the formula. Thus, when model checking mutual exclusiveness of two transitions of a given net system a
fresh finite complete prefix of an augmented version of the system must be constructed. For instance, if one
wants to check mutual exclusiveness of every distinct pair of transitions in the net system in Fig. 1(a), one
needs to construct and analyze 36 finite complete prefixes! Additionally, one finite complete prefix must be
constructed to check whether each transition of the system is related with itself via mutual exclusiveness.
Note that one can check whether a transition is an element of some occurrence sequence in a net system by
using the solution to the executability problem proposed in [EH08].

In contrast, one can rely on a single representative untangling of a net system to efficiently decide mutual
exclusiveness for all pairs of transitions of this net system.

13 http://lpsolve.sourceforge.net/
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Lemma 7.8 (Mutual exclusiveness – untanglings).
Let Π be a representative untangling of a net system S ∶= (N,M), N ∶= (P,T,F ). Transitions t1 ∈ T and
t2 ∈ T are mutually exclusive in S iff for every process π ∈ Π, π ∶= (Nπ, ρ), Nπ ∶= (B,E,G), and for every two
events e1 ∈ E and e2 ∈ E it holds that either ρ(e1) ≠ t1 or ρ(e2) ≠ t2 ⌟

Proof. We prove each direction of the statement separately.
(⇒) Assume that for every occurrence sequence σ in S it holds that either t1 or t2 is not an element of σ,
but there exist a process π ∈ Π, π ∶= (Nπ, ρ), Nπ ∶= (B,E,G), and events e1, e2 ∈ E such that ρ(e1) = t1
and ρ(e2) = t2. Then, according to Lemma 1 in [Des00], there exists an occurrence sequence in S of which
both t1 and t2 are elements.

(⇐) Assume that for every process π ∈ Π, π ∶= (Nπ, ρ), Nπ ∶= (B,E,G), and for every two events e1 ∈ E and
e2 ∈ E it holds that either ρ(e1) ≠ t1 or ρ(e2) ≠ t2. According to Definition 4.1, every run in S is represented
by some process π ∈ Π. Then, there exists no run and, thus, no occurrence sequence σ in S such that t1
and t2 are elements of σ. ◾

Given a net system S, one can efficiently decide whether two transitions of S are mutually exclusive using a
representative untangling of S.

Proposition 7.9 (Mutual exclusiveness).
Given a representative untangling Π of a net system S ∶= (N,M), N ∶= (P,T,F ), the following problem can
be solved in linear time on Π: To decide if transitions t1 ∈ T and t2 ∈ T are mutually exclusive in S. ⌟

The proof of Proposition 7.9 is a direct consequence of Lemma 7.8. Indeed, given two transitions t1 and t2
of a net system S, one can verify whether they are mutually exclusive in S by checking if a representative
untangling of S contains a process with events that describe occurrences of t1 and t2. For example, one can
use the processes in Figs. 2 and 4 to verify that transitions t1 and t4 are the only two mutually exclusive
transitions in the net system in Fig. 1(a). Indeed, none of the five processes in the two figures contains an
event that describes an occurrence of transition t1 and an event that describes an occurrence of transition t4.

Next, we compare two techniques for computing the mutual exclusiveness relation on transitions of a
net system, one using a representative untangling of the net system and the other relying on the study of a
finite complete prefix of the net system. To have a fair comparison, instead of adopting the model checking
approach proposed in [EH08], which as discussed above requires us to construct a fresh finite complete prefix
for each pair of distinct transitions of the net system, we reduce the problem to the covering problem [Rac78],
which can be solved for all pairs of transitions on a single finite complete prefix of a specially augmented
version of the net system. More precisely, prior to constructing a finite complete prefix of a net system, it
gets transformed via injections of guards. An injection of a guard for a transition of a net system results
in a structural transformation of the net system. This structural transformation was used in [PWC+14]
to reduce the problem of computing can conflict and can co-occur relations of the 4C spectrum to the
reachability problem [Hac75], refer to Definition 5.1 and Proposition 5.2 in [PWC+14]. Finally, given a net
system S ∶= (N,M0), N ∶= (P,T,F ), and a marking M ∶= (K,µ), the covering problem consists of deciding
whether there exists a marking M ′ ∶= (K ′, µ′) that is reachable from S and covers M , where M ′ covers M
iff for every place p ∈ P it holds that µ′ assigns at least as many tokens to p as µ.

Fig. 14(a) shows the net system S′ obtained from the net system S in Fig. 1(a) via injections of guards
for transitions t4 and t8. In the figure, fresh places and transitions added to S are highlighted with grey
background. Transitions t̂4 and t̂8 are the guard transitions for t4 and t8, respectively. Places q and s are the
control places for t4 and t8, respectively. A guard transition t′ for a transition t can occur instead of t and
implements the effect of an occurrence of t, i.e., the preset and postset of t′ contains the preset and postset of
t, respectively. For every run δ in S′ it holds that t′ can occur at most once in δ. This is ensured by one fresh
token assigned to the special fresh input place of t′, e.g., see places p and r in Fig. 14(a). An occurrence of t′

‘allows’ subsequent occurrences of t by producing a token at the control place for t.
Clearly, different orderings of injections of guards in S for all transitions from a given set of transitions

of S lead to the same resulting net system S′. Moreover, occurrence sequences in S and S′ are closely
related. In particular, one can construct an occurrence sequence in S from an occurrence sequence δ in S′ by
replacing every occurrence of every guard transition in δ with an occurrence of a transition that this guard
was introduced for. Similarly, one can construct an occurrence sequence in S′ from an occurrence sequence δ
in S by replacing all first occurrences of transitions for which guard transitions in S were introduced with the
respective guard transitions. For example, t4 t5 t6 t7 t8 t5 t6 t7 t8 and t̂4 t5 t6 t7 t̂8 t5 t6 t7 t8 are two such related
occurrence sequences in the net systems in Fig. 1(a) and Fig. 14(a), respectively.
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Fig. 14. (a) A net system obtained from the net system in Fig. 1(a) via injections of guards for transitions t4
and t8, (b) a net system obtained from the net system in (a) by adding control transition t for places q and s,
and (c) a finite complete prefix of the net system in (a).

Lemma 7.10 (Mutual exclusiveness – the covering problem).
Let S ∶= (N,M), N ∶= (P,T,F ), be a net system and let S′ ∶= (N ′,M ′), N ′ ∶= (P ′, T ′, F ′), be a net system
obtained via injections of guards in S, cf. Definition 5.1 in [PWC+14], for all transitions in T . Let t1 ∈ T
and t2 ∈ T be transitions of N , where p1 ∈ P

′ and p2 ∈ P
′ are the control places for t1 and t2, respectively.

Transitions t1 and t2 are mutually exclusive in S iff for every marking M ′′ that is reachable from S′ it holds
that M ′′ does not cover a marking of N ′ that induces the state [p1 p2]. ⌟

Indeed, if t1 and t2 are mutually exclusive then there exists no occurrence sequence in S of which t1 and t2
are elements. Hence, there exists no occurrence sequence in S′ of which the guard transitions for t1 and t2
are elements. Then, one cannot reach a marking from S′ that covers a marking that puts one token at place
p1, one token at place p2, and no tokens elsewhere. Moreover, if one cannot reach a marking from S′ that
assigns tokens to p1 and p2 then there exists no occurrence sequence in S′ that contains occurrences of the
respective guard transitions. Consequently, one cannot find an occurrence sequence in S′ from which it is
possible to construct an occurrence sequence in S of which both t1 and t2 are elements.

Note that the covering problem is decidable [Rac78]. The procedure for deciding the covering problem
proposed in [Rac78] operates in space exponential in the size of the input net system. Alternatively, one can
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Fig. 15. (a) Sizes of representative untanglings of the original net systems and of finite complete prefixes of
the augmented net systems obtained after injecting guards for all transitions, (b) ratios between sizes of finite
complete prefixes and representative untanglings of original and augmented net systems, and average times
of deciding mutual exclusiveness on all transitions of net systems using representative untanglings and finite
complete prefixes: (c) decision times and (d) times spent on constructing auxiliary artifacts plus decision
times.

use finite complete prefixes when deciding the covering problem. The procedures for deciding the covering
problem of net systems on their finite complete prefixes operate in times that are exponential in the sizes of
the prefixes [Kho03]. However, these times are often acceptable in practice.

We performed a number of measurements to compare two techniques for computing the mutual exclusive-
ness relation on transitions of net systems in the collection under evaluation, one that uses representative
untanglings (as per Lemma 7.8) and the other that relies on the solution to the covering problem on finite
complete prefixes (as per Lemma 7.10), cf. [Kho03] for details.

Fig. 15(a) reports on sizes (as measured by the number of nodes) of constructed representative untanglings
(rep. unt.) of the original net systems (these sizes are the same as those reported in Fig. 11(a)) and finite
complete prefixes of the augmented net systems obtained after injections of guards for all transitions (aFCP
of unf.); again, note the use of a logarithmic scale. Observe that injections of guards preserve safeness of
systems, which allows us to keep using the total adequate order for safe systems proposed in [ERV02] when
constructing the prefixes. Similar to Fig. 11(a), the non-shaded diamonds encode sizes of representative
untanglings, whereas the shaded ones give sizes of finite complete prefixes.

Though construction of a finite complete prefix of a bounded net system is considered to be efficient in
practice, it is of an exponential nature and can easily explode [KKKV06], both in terms of computation
time and the size of the resulting prefix. For instance, Fig. 14(c) shows a finite complete prefix of the net
system in Fig. 14(a); again the dotted arrows encode relations between cutoffs and corresponding events of
the prefix. The prefix is composed of 60 nodes (conditions and events). Note that the finite complete prefix of
the original net system (before injections of guards) is shown in Fig. 10 and consists of 25 nodes.
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For every net system S in the collection, Fig. 15(b) reports on the ratio of the size of the finite complete
prefix of S to the size of the representative untangling of S. The non-shaded circles encode ratios of sizes of
finite complete prefixes of original net systems (FCP of unf.) to sizes of their representative untanglings (rep.
unt.). For every constructed representative untangling, it holds that it is either of the same size or is larger
than the constructed finite complete prefix of the corresponding net system, i.e., the respective ratio is less
than or equal to one. The situation changes once net systems get augmented via injections of guards (a guard
is injected for every transition of every system in the collection). The shaded circles in Fig. 15(b) report on
ratios of sizes of finite complete prefixes of augmented net systems (aFCP of unf.) to sizes of representative
untanglings of original net systems (rep. unt.). In most of the cases finite complete prefixes turn to be larger in
size than their respective representative untanglings. On average, we observed that the size of the constructed
representative untangling of the original net system is 70% of the size of the constructed finite complete
prefix of the corresponding augmented net system.

Fig. 15(c) reports average times (on a logarithmic scale) of computing the mutual exclusiveness relations
on transitions for the 448 net systems under evaluation using representative untanglings (as per Lemma 7.8)
and finite complete prefixes of unfoldings of augmented net systems (as per Lemma 7.10). On average, a
mutual exclusiveness relation was computed in 169 microseconds and 931 milliseconds using representative
untanglings (rep. unt.) and finite complete prefixes (aFCP of unf.), respectively. Similarly, Fig. 15(d) reports
overall times spent on constructing auxiliary artifacts, either representative untanglings or finite complete
prefixes of augmented net systems, and subsequently computing the mutual exclusiveness relation using the
respective artifacts. On average, the observed overall time of computing the mutual exclusiveness relation for
a net system S, i.e., deciding mutual exclusiveness for every pair of transitions of S, is 3 and 1027 milliseconds
using its representative untangling and the finite complete prefix of its augmented version, respectively.

In [McM92], Ken McMillan proposes an alternative method for solving the covering problem for a safe net
system, which relies on the use of a finite complete prefix of the system. If one wants to verify whether a given
set of places of a net system can ever be marked simultaneously at some of its reachable markings, one first
needs to add a fresh control transition with the given places as inputs and without output places; note that
in order to use this method we need to violate the requirement of every net being T-restricted. Consequently,
if a finite complete prefix of the resulting net system contains an event that describes an occurrence of the
control transition, then from the original net system one can reach a marking that covers a marking that
puts one token at every place in the given set of places and no tokens at the other places. Hence, one can
organize the computation of the mutual exclusiveness relation by augmenting a net system obtained after
injections of guards in a given net system further by adding one fresh transition for every two distinct injected
control places, such that these two places are its only inputs. Then, one can decide mutual exclusiveness for
every two distinct transitions of the given net system by registering events that describe occurrences of the
control transitions during a single traversal over all the events in a finite complete prefix of the resulting
net system. For example, Fig. 14(b) shows the net system obtained from the net system in Fig. 14(a) by
adding control transition t (highlighted with grey background) for the control places q and s. One can decide
mutual exclusiveness of transitions t4 and t8 in the net system in Fig. 1(a) based on the presence of events
that describe occurrences of t in a finite complete prefix of the unfolding of the net system in Fig. 14(b).
Though the described procedure is efficient, finite complete prefixes of net systems after injections of guards
and subsequent insertions of control transitions tend to explode in size. For instance, the finite complete
prefix of net system S′ obtained from net system S in Fig. 1(a) after injecting guards for all transitions of S
is composed of 90 nodes, whereas the finite complete prefix of net system S′′ obtained from S′ by adding
control transitions for each pair of distinct control places is composed of 193 nodes. For the collection of 448
net systems under evaluation, we observed that the size of the constructed representative untangling of a net
system is on average 24% of the size of the constructed finite complete prefix of the augmented version of the
net system obtained after injections of guards and control transitions.

8. Conclusion

This article contributes the theory of untanglings, which provides a novel characterization of behaviors
encoded in concurrent systems. The theory revolves around the notion of a representative untangling, i.e., an
alternative representation of a concurrent system, which strikes a good balance between the size of the model
of a system and the time required for analysis of its behavioral properties.

The article proposes a baseline algorithm for constructing representative untanglings of concurrent



Untanglings: A Novel Approach to Analyzing Concurrent Systems 35

systems. As the name suggests, this algorithm should be used as a reference that specifies basic principles for
constructing representative untanglings. The article also contributes a generic framework for improving the
baseline algorithm based on structural transformations of input systems, and describes two reduction rules
that fit this framework. It is shown that the desired properties of representative untanglings are preserved
by this framework. Moreover, an experiment with a real-life collection of concurrent systems confirms the
scalability of the improved algorithm both in terms of time and space. Finally, this article demonstrates the use
of representative untanglings for analysis of concurrent systems. It is shown that representative untanglings
offer significant benefits over the state-of-the-art when deciding behavioral properties of concurrent systems.

Future work can be performed (i) to extend the repertoire of structural transformations that fit the
proposed framework for improving the baseline untangling algorithm, (ii) to improve the baseline untangling
algorithm, e.g., by introducing mechanisms for pruning redundant (parts of) discovered maximal significant
runs, (iii) to introduce the notion of a canonical representative untangling of a system, i.e., a representative
untangling of the system with the least number of nodes, and (iv) to propose new analysis techniques that
rely on the use of (representative) untanglings.
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